<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 User Manual</td>
</tr>
<tr>
<td>1.1 Building Nalu</td>
</tr>
<tr>
<td>1.2 Running Nalu</td>
</tr>
<tr>
<td>2 Developer Manual</td>
</tr>
<tr>
<td>2.1 Testing Nalu</td>
</tr>
<tr>
<td>2.2 Source Code Documentation</td>
</tr>
<tr>
<td>2.3 Writing Developer Documentation</td>
</tr>
<tr>
<td>2.4 Writing User Documentation</td>
</tr>
<tr>
<td>2.5 Building the Documentation</td>
</tr>
<tr>
<td>2.6 Developer Workflow</td>
</tr>
<tr>
<td>2.7 Nalu Style Guide</td>
</tr>
<tr>
<td>2.8 Contributing to Nalu</td>
</tr>
<tr>
<td>3 Sierra Low Mach Module: Nalu - Theory Manual</td>
</tr>
<tr>
<td>3.1 Low Mach Number Derivation</td>
</tr>
<tr>
<td>3.2 Supported Equation Set</td>
</tr>
<tr>
<td>3.3 Discretization Approach</td>
</tr>
<tr>
<td>3.4 Advection Stabilization</td>
</tr>
<tr>
<td>3.5 Pressure Stabilization</td>
</tr>
<tr>
<td>3.6 RTE Stabilization</td>
</tr>
<tr>
<td>3.7 Nonlinear Stabilization Operator (NSO)</td>
</tr>
<tr>
<td>3.8 Turbulence Modeling</td>
</tr>
<tr>
<td>3.9 Supported Boundary Conditions</td>
</tr>
<tr>
<td>3.10 Overset</td>
</tr>
<tr>
<td>3.11 Property Evaluations</td>
</tr>
<tr>
<td>3.12 Coupling Approach</td>
</tr>
<tr>
<td>3.13 Time discretization</td>
</tr>
<tr>
<td>3.14 Multi-Physics</td>
</tr>
<tr>
<td>3.15 Wind Energy Modeling</td>
</tr>
<tr>
<td>3.16 Topological Support</td>
</tr>
<tr>
<td>3.17 Adaptivity</td>
</tr>
<tr>
<td>3.18 Code Abstractions</td>
</tr>
<tr>
<td>4 Sierra Low Mach Module: Nalu - Verification Manual</td>
</tr>
<tr>
<td>4.1 Introduction</td>
</tr>
<tr>
<td>4.2 2D Unsteady Uniform Property: Convecting Decaying Taylor Vortex</td>
</tr>
<tr>
<td>4.3 Higher Order 2D Steady Uniform Property: Taylor Vortex</td>
</tr>
<tr>
<td>4.4 3D Steady Non-isothermal with Buoyancy</td>
</tr>
<tr>
<td>4.5 3D Steady Non-uniform with Buoyancy</td>
</tr>
</tbody>
</table>
1.1 Building Nalu

1.1.1 Building Nalu Semi-Automatically Using Spack

The routine usage of Spack has been deprecated in favor of the manual-based build process.

1.1.2 Building Nalu Manually

If you prefer not to build using Spack, below are instructions which describe the process of building Nalu by hand.

Linux and OSX

The instructions for Linux and OSX are mostly the same, except on each OS you may be able to use a package manager to install some dependencies for you. Using Homebrew on OSX is one option listed below. Compilers and MPI are expected to be already installed. If they are not, please follow the open-mpi build instructions. Start by creating a $nalu_build_dir and $nalu_install_dir in which to work. The former is the location in which the TPL source code resides while the later is for installation. A sample install might be /home/nalu_user/gitHubWork/scratch_build/install/gcc7.2.0 while the build location, /home/nalu_user/gitHubWork/scratch_build.

Homebrew

If using OSX, you can install many dependencies using Homebrew. Install Homebrew on your local machine and reference the list below for some packages Homebrew can install for you which allows you to skip the steps describing the build process for each application, but not that you will need to find the location of the applications in which Homebrew has installed them, to use when building Trilinos and Nalu.

```
brew install openmpi
brew install cmake
brew install libxml2
```

CMake v3.17.0

CMake is provided here. The version of CMake that is used is generally dictated by the Trilinos project.

Prepare:
cd $nalu_build_dir/packages
tar -xf cmake-3.17.0.tar.gz

Build:

cd $nalu_build_dir/packages/cmake-3.17.0
./configure --prefix=$nalu_install_dir/cmake/3.17.0
make
make install

Python v3+

The regression test suite for Nalu uses Python and requires a version greater than 3.

YAML-CPP 0.6.2

YAML is provided here. Versions of Nalu before v1.1.0 used earlier versions of YAML-CPP. For brevity only the latest build instructions are discussed and the history of the Nalu git repo can be used to find older installation instructions if required. YAML-CPP has introduced several fixes since v0.5.3 in the master branch, so it is recommended to use the 0.6.2 informal release.

Prepare:

cd $nalu_build_dir/packages
cd yaml-cpp
git checkout yaml-cpp-0.6.2

Build:

cd $nalu_build_dir/packages/yaml-cpp
mkdir build
cd build
cmake -DCMAKE_CXX_COMPILER=mpicxx -DCMAKE_CXX_FLAGS=-std=c++11 -DCMAKE_CC_COMPILER=mpicc -DCMAKE_INSTALL_PREFIX=$nalu_install_dir/yaml/0.6.2 ..
make
make install

Zlib v1.2.11

Zlib is provided here.

Prepare:

cd $nalu_build_dir/packages
curl -o zlib-1.2.11.tar.gz https://zlib.net/fossils/zlib-1.2.11.tar.gz
tar -zxvf zlib-1.2.11.tar.gz

Build:

cd $nalu_build_dir/packages/zlib-1.2.11
CC=gcc CXX=g++ CFLAGS=-O3 CXXFLAGS=-O3 ./configure --prefix=$nalu_install_dir/zlib/1.2.11

(continues on next page)
Nalu Documentation, Release 1.2.0

make
make install

HDF5 v1.10.6

HDF5 1.10.6 is provided here.

Prepare:

```
cd $nalu_build_dir/packages/
tar -xvf hdf5-1.10.6.tar
```

Build:

```
cd $nalu_build_dir/packages/hdf5-1.10.6
./configure CC=mpicc FC=mpif90 CXX=mpicxx CXXFLAGS="-fPIC -O3" CFLAGS="-fPIC -O3"
   --FCFLAGS="-fPIC -O3" --enable-parallel --with-zlib=$nalu_install_dir/zlib/1.2.11 --
   --prefix=$nalu_install_dir/hdf5/1.10.6
make
make install
make check
```

NetCDF v4.7.4 and Parallel NetCDF v1.12.1

In order to support all aspects of Nalu’s parallel models, NetCDF and Parallel NetCDF must be consistent.

Parallel NetCDF v1.12.1

Parallel NetCDF is provided on the Argon Trac Page. Newer versions can be found managed by Northwestern.

Prepare:

```
cd $nalu_build_dir/packages/
tar -zxvf pnetcdf-1.12.1.tar.gz
```

Build:

```
cd pnetcdf-1.12.1
./configure --prefix=$nalu_install_dir/pnetcdf/1.12.1 CC=mpicc FC=mpif90 CXX=mpicxx
   --CFLAGS="-I$nalu_install_dir/pnetcdf/1.12.1/include -O3" LDFLAGS=-L$nalu_install_dir/
   --pnetcdf/1.12.1/lib --disable-fortran
make
make install
```

Note that we have created an install directory that might look like $nalu_build_dir/install.

NetCDF v4.7.4

NetCDF is provided here.

Prepare:
cd $nalu_build_dir/packages/
curl -o netcdf-c-4.7.4.tar.gz https://codeload.github.com/Unidata/netcdf-c/tar.gz/v4.7.4
tar -zxvf netcdf-c-4.7.4.tar.gz

Build:

```bash
cd netcdf-c-4.7.4/
./configure --prefix=$nalu_install_dir/netcdf/4.7.4 CC=mpicc FC=mpif90 CXX=mpicxx
--CFLAGS="-I$nalu_install_dir/hdf5/1.10.6/include -I$nalu_install_dir/pnetcdf/1.12.1/"
--include -O3" CPPLFLAGS=${CFLAGS} LDFLAGS="-L$nalu_install_dir/hdf5/1.10.6/lib -L
$nalu_install_dir/pnetcdf/1.12.1/lib -L$nalu_install_dir/zlib/1.2.11/lib -Wl,--
rpath=$nalu_install_dir/hdf5/1.10.6/lib" --enable-pnetcdf --enable-parallel-tests --
enable-netcdf-4 --disable-shared --disable-fsync --disable-cdmremote --disable-dap --
disable-doxygen --disable-v2
make -j 4
make check
make install
```

Trilinos

Trilinos is managed by the Trilinos project and can be found on Github. The Nalu code base follows develop branch.

Prepare:

```bash
cd $nalu_build_dir/packages/
git clone https://github.com/trilinos/Trilinos.git
cd $nalu_build_dir/packages/Trilinos
git checkout develop
mkdir build

./do-configTrilinos_release
make -j 16
make install
```

Deprecated TPLS

The below TPLS are no longer required for Nalu builds. However, instructions for the particular libraries used in past versions of the code follow.

**SuperLU v4.3**

Required usage of SuperLU is a deprecated; optional package provided here. KLU2, as described in the Amesos2 documentation here, is automatically used in place of SuperLU if not included. If desired, a SuperLU build can instead use KLU2 in place of SuperLU by specifying as such in the MueLu.xml configuration file as follows.

```xml
<Parameter name="coarse: type" type="string" value="klu2"/>
```

Prepare:
cd $nalu_build_dir/packages
curl -o superlu_4.3.tar.gz http://crd-legacy.lbl.gov/~xiaoye/SuperLU/superlu_4.3.tar.gz
tar xf superlu_4.3.tar.gz

Build:

cd $nalu_build_dir/packages/SuperLU_4.3
cp MAKE_INC/make.linux make.inc

To find out what the correct platform extension PLAT is:

uname -m

Edit make.inc as shown below (diffs shown from baseline).

```
PLAT = _x86_64
SuperLUroot = /your_path_to_install/SuperLU_4.3 i.e., $nalu_install_dir/SuperLU/4.3
BLASLIB = -L/usr/lib64 -lblas
CC = mpicc
FORTRAN = mpif77
```

On some platforms, the $nalu_install_dir may be mangled and, thus the make will fail. In such cases, you need to use the entire path to your_path_to_install/SuperLU_4.3.

Next, make some new directories:

```
mkdir $nalu_install_dir/SuperLU/4.3
mkdir $nalu_install_dir/SuperLU/4.3/lib
mkdir $nalu_install_dir/SuperLU/4.3/include
cd $nalu_build_dir/packages/SuperLU_4.3
make
cp SRC/*.h $nalu_install_dir/SuperLU/4.3/include
```

If you are planning on sharing this install location with other team members, you will likely need to change a permission on a particular file, chmod g+r $nalu_install_dir/SuperLU/4.3/include/superlu_enum_consts.h.

**Libxml2 v2.9.2**

Libxml2, which is no longer required for Nalu builds, is found here.

Prepare:

```
cd $nalu_build_dir/packages
curl -o libxml2-2.9.2.tar.gz http://www.xmlsoft.org/sources/libxml2-2.9.2.tar.gz
tar -xvf libxml2-2.9.2.tar.gz
```

Build:

```
cd $nalu_build_dir/packages/libxml2-2.9.2
CC=mpicc CXX=mpicxx ./configure --without-python --prefix=$nalu_install_dir/libxml2/2.9.2
make
make install
```

1.1. Building Nalu
Boost v1.68.0

Required usage of Boost is a deprecated; optional package provide here.

Prepare:

```
cd $nalu_build_dir/packages
curl -o boost_1_68_0.tar.gz http://iweb.dl.sourceforge.net/project/boost/boost/1.68.0/
→boost_1_68_0.tar.gz
tar -zxvf boost_1_68_0.tar.gz
```

Build:

```
cd $nalu_build_dir/packages/boost_1_68_0
./bootstrap.sh --prefix=$nalu_install_dir/boost/1.68.0 --with-libraries=signals,regex,
→filesystem,system,mpi,serialization,thread,program_options,exception
You may or may not need to edit project-config.jam and add a `using mpi`, e.g.
using mpi: /path/to/mpi/openmpi/bin/mpicc
./b2 -j 4 2>&1 | tee boost_build_one
./b2 -j 4 install 2>&1 | tee boost_build_install
```

HYPRE

Nalu has deprecated HYPRE solver and preconditioner usage. Users wishing to use HYPRE solver and preconditioner combination must compile HYPRE library and link to it when building Nalu and also re-establish the linear system assembly approach in the code base.

```
# 1. Clone hypre sources
https://github.com/hypre-space/hypre
cd hypre/src
# 2. Configure HYPRE package and pass installation directory
./configure --prefix=$nalu_install_dir --without-superlu --without-openmp --enable-
→bigint
# 3. Compile and install
make && make install
```

Note:

1. Make sure that --enable-bigint option is turned on if you intend to run linear systems with > 2 billion rows. Otherwise, nalu executable will throw an error at runtime for large problems.
2. Users must pass `ENABLE_HYPRE` option to CMake during Nalu configuration phase. Optionally, the variable `DHYPRE_DIR` can be used to pass the path of HYPRE install location to CMake.

Build

Place into the build directory, one of the `do-configTrilinos_*` files, that can be obtained from the Nalu repo.
do-configTrilinos_* will be used to run cmake to build trilinos correctly for Nalu. Note that there are two files: one for 'release' and the other 'debug'. The files can be found on the Nalu GitHub site or copied from $nalu_build_dir/packages/Nalu/build, which is created in the Nalu build step documented below. For example:

Pull latest version of do-configTrilinos_* from Nalu’s GitHub site:

```
curl -o $nalu_build_dir/packages/Trilinos/build/do-configTrilinos_release https://raw.githubusercontent.com/NaluCFD/Nalu/master/build/do-configTrilinos_release
```

Or if you create the Nalu directory as directed below, simply copy one of the do-configTrilinos_* files from local copy of Nalu’s git repository:

```
cp $nalu_build_dir/packages/Nalu/build/do-configTrilinos_release $nalu_build_dir/packages/Trilinos/build
```

Now edit do-configTrilinos_release to modify the paths so they point to the proper TPL $nalu_install_dir.

```
cd $nalu_build_dir/packages/Trilinos/build
chmod +x do-configTrilinos_release
```

Make sure all other paths to netcdf, hdf5, etc., are correct.

```
./do-configTrilinos_release
make
make install
```

ParaView Catalyst

Optionally enable ParaView Catalyst for in-situ visualization with Nalu. These instructions can be skipped if you do not require in-situ visualization with Nalu. This capability is not tested nightly.

Build ParaView SuperBuild v5.9.0

The ParaView SuperBuild builds ParaView along with all dependencies necessary to enable Catalyst with Nalu. Clone the ParaView SuperBuild within $nalu_build_dir/packages:

```
cd $nalu_build_dir/packages/
git clone --recursive https://gitlab.kitware.com/paraview/paraview-superbuild.git
cd paraview-superbuild
git fetch origin
git checkout v5.9.0
git submodule update
```

Create a new build folder in $nalu_build_dir/:

```
cd $nalu_build_dir
mkdir paraview-superbuild-build
cd paraview-superbuild-build
```

Copy $nalu_build_dir/Nalu/build/do-configParaViewSuperBuild to paraview-superbuild-build. Edit do-configParaViewSuperBuild to modify the defined paths as follows:

1.1. Building Nalu
nalu_build_dir=<path to root nalu build dir>

Configure CMake and start the build.

./do-configParaViewSuperBuild
make -j 8

Build Nalu ParaView Catalyst Adapter

Create a new build folder in $nalu_build_dir/:

cd $nalu_build_dir
mkdir paraview-catalyst-adapter-build
cd paraview-catalyst-adapter-build

Copy $nalu_build_dir/Nalu/build/do-configParaViewCatalystAdapter to paraview-catalyst-adapter-build. Edit do-configParaViewCatalystAdapter and modify nalu_build_dir and nalu_install_dir at the top of the file.

nalu_build_dir=<path to root nalu build dir>
nalu_install_dir=<path to nalu install dir>

Configure CMake, build, and install.

./do-configParaViewCatalystAdapter
make
make install

Nalu

Nalu is provided here. One may either build the released Nalu version 1.2.0 which matches with Trilinos version 12.12.1, or the master branch of Nalu which matches with the master branch or develop branch of Trilinos. If it is necessary to build an older version of Nalu, refer to the history of the Nalu git repo for instructions on doing so.

Prepare:

git clone https://github.com/NaluCFD/Nalu.git

Build

In Nalu/build, you will find the do-configNalu script. Copy the do-configNalu_release or debug file to a new, non-tracked file:

cp do-configNalu_release do-configNaluNonTracked

Edit the paths at the top of the files by defining the nalu_install_dir variable. Within Nalu/build, execute the following commands:

./do-configNaluNonTracked
make

This process will create naluX within the Nalu/build location. You may also build a debug executable by modifying the Nalu config file to use “Debug”. In this case, a naluXd executable is created.
Build Nalu with ParaView Catalyst Enabled

If you have built ParaView Catalyst and the Nalu ParaView Catalyst Adapter, you can build Nalu with Catalyst enabled.

In Nalu/build, find do-configNaluCatalyst. Copy do-configNaluCatalyst to a new, non-tracked file and modify nalu_install_dir at the top of the file.

```
nalu_install_dir=<path to nalu install dir>
```

Configure CMake and build.

```
./do-configNaluCatalystNonTracked
make
```

The build will create the same executables as a regular Nalu build, and will also create a bash shell script named naluXCatalyst. Use naluXCatalyst to run Nalu with Catalyst enabled. It is also possible to run naluX with Catalyst enabled by first setting the environment variable:

```
export CATALYST_ADAPTER_INSTALL_DIR=$nalu_build_dir/install
```

Nalu will render images to Catalyst in-situ if it encounters the keyword `catalyst_file_name` in the `output` section of the Nalu input deck. The `catalyst_file_name` command specifies the path to a text file containing ParaView Catalyst input deck commands. Consult the `catalyst.txt` files in the following Nalu regression test directories for examples of the Catalyst input deck command syntax:

```
mixedTetPipe/
steadyTaylorVortex/
```

When the above regression tests are run, Catalyst is run as part of the regression test. The regression test checks that the correct number of image output files have been created by the test.

The Nalu Catalyst integration also supports running Catalyst Python script files exported from the ParaView GUI. The procedure for exporting Catalyst Python scripts from ParaView is documented in the Catalyst user guide. To use an exported Catalyst script, insert the `paraview_script_name` keyword in the `output` section of the Nalu input deck. The argument for the `paraview_script_name` command contains a file path to the exported script.

```
output:
  output_data_base_name: mixedTetPipe.e
  catalyst_file_name: catalyst.txt
```

```
output:
  output_data_base_name: mixedTetPipe.e
  paraview_script_name: paraview_exported_catalyst_script.py
```

1.2 Running Nalu

This section describes the general process of setting up and executing Nalu, understanding the various input file options available to the user, and how to extract results and analyze them. For the simplest case, Nalu requires the user to provide a YAML input file with the options that control the run along with a computational mesh in Exodus-II format. More complex setups might require additional files:

- Trilinos MueLu preconditioner configuration in XML format
- ParaView Catalyst input file for in-situ visualizations
• Additional Exodus-II mesh files for solving different physics equation sets on different meshes, or for solution transfer to an input/output mesh.

1.2.1 Exodus-II File Format

Nalu requires the user to provide the computational mesh in Exodus-II format. The output and restart files generated by Nalu are also in Exodus-II format where the requested fields are output along side the mesh. The restart files from one Nalu simulation can serve as the input file for a subsequent simulation.

Several commercial mesh generation software support output to Exodus-II format. Two such software used by Nalu developers are:

• CUBIT
• Pointwise

Furthermore, NaluWindUtils provides an `abl_mesh` utility that can be used to generate simple structured meshes (output into Exodus-II format) for use with atmospheric boundary layer simulations.

Examining Exodus-II Files

Exodus-II uses the NetCDF format to store data, therefore, the several NetCDF utilities can be used to examine the file metadata. For example, the following code snippet shows the use of `ncdump` to examine the names of the mesh blocks and side sets, as well as the nodal fields available in a given mesh file.

```
ncdump -v eb_names,ss_names,name_nod_var channel_coarse_ic.g
# <output truncated to show only relevant parts>
data:
  eb_names =
    "interior" ;

  ss_names =
    "inlet",
    "outlet",
    "bottomwall",
    "topwall",
    "back",
    "front" ;

  name_nod_var =
    "turbulent_ke",
    "velocity_x",
    "velocity_y",
    "velocity_z" ;
```

For brevity, the example above has removed the NetCDF dimensions and variables sections to show just the contents of the variable names of interest. The output shows that the mesh in question contains one element block (interior) with six boundary planes (side-sets) and has two nodal fields: the velocity vector, and the turbulent kinetic energy scalar. `ncdump` can be invoked with the `--h` flag to print just the headers. Of particular interest is the NetCDF dimensions section that contains information about the total number of nodes, element, boundary faces, etc. in the mesh file.

Most visualization programs support loading Exodus-II mesh/solution files and can be used to visualize the flow fields generated by Nalu. Two open-source visualization programs available are:

• ParaView
• VisIt

Preliminary support for in-situ visualization using ParaView Catalyst is available within the Nalu code base and can be enabled by linking to Catalyst libraries during compile time. See input file specifications for more details on setting up Catalyst for in-situ visualization of Nalu solution files.

Other Exodus-II Utilities

A brief description of some useful Exodus-II utilities are provided here. Please consult the documentation of these programs to understand the full range of options available.

decomp
decomp is a SEACAS utility (available from a Trilinos install) that can be used to decompose a mesh file across several MPI ranks for use in a subsequent parallel simulation.

epu
epu performs the reverse action of decomp, i.e., it combines parallel decomposed files from a simulation into a single Exodus-II database. The simplest invocation is

```
epu -auto nalu_output.e.8.0
```

The -auto flag determines the database structure based on the file provided on the command line and combines the files (in the above example into nalu_output.e).

mapvar-kd

Map solution fields from one mesh to another mesh.

percept

The Percept project provides various tools to perform mesh refinement, higher-order promotion, etc. See documentation for mesh_adapt to determine various options available.

1.2.2 Invoking Nalu - Command-line options

Nalu’s runtime behavior can be controlled by using several command line input options during invocation. Users can invoke -h to determine the various options available.

-h, --help
Print the help message describing all Nalu options and exit

-i, --input-deck
Use the filename provided as the input file. If this option is not provided, naluX will attempt to load a file called nalu.i in the current working directory as the input file.

-o, --log-file
The log file where the output generated by Nalu is directed to. If no file is provided, then naluX will use the base name of the Nalu input file with the extension .log as the output file. For example, if naluX was invoked as naluX -i ABL.neutral.i then the output will be redirected to a file named ABL.neutral.log. Note that the file is overwritten if it already exists.

-v, --version
Print the Nalu version string.

-p, --pprint
Enable parallel printing from all MPI ranks.
Nalu Documentation, Release 1.2.0

-D, --debug
Enable verbose debug printing to log file.

1.2.3 Nalu Input File

Nalu requires the user to provide an input file, in YAML format, during invocation at the command line using the naluX -i flag. By default, naluX will look for nalu.i in the current working directory to determine the mesh file as well as the run setup for execution. A sample nalu.i is shown below:

Listing 1.1: Sample Nalu input file for the Heat Conduction problem

```yaml
# -*- mode: yaml -*-
#
# Example Nalu input file for a heat conduction problem
#
Simulations:
  - name: sim1
    time_integrator: ti_1
    optimizer: opt1

linear_solvers:
  - name: solve_scalar
    type: tpetra
    method: gmres
    preconditioner: sgs
    tolerance: 1e-3
    max_iterations: 75
    kspace: 75
    output_level: 0

realms:
  - name: realm_1
    mesh: periodic3d.g
    use_edges: no
    automatic_decomposition_type: rcb

  equation_systems:
    name: theEqSys
    max_iterations: 2

    solver_system_specification:
      temperature: solve_scalar

    systems:
      - name: HeatConduction
        max_iterations: 1
        convergence_tolerance: 1e-5

initial_conditions:

  - constant: ic_1
    target_name: block_1
    value:
```

(continues on next page)
temperature: 10.0

material_properties:
  target_name: block_1
  specifications:
  - name: density
type: constant
value: 1.0
  - name: thermal_conductivity
type: constant
value: 1.0
  - name: specific_heat
type: constant
value: 1.0

boundary_conditions:
- wall_boundary_condition: bc_left
target_name: surface_1
wall_user_data:
temperature: 20.0

- wall_boundary_condition: bc_right
target_name: surface_2
wall_user_data:
temperature: 40.0

solution_options:
  name: myOptions
  use_consolidated_solver_algorithm: yes
  options:
  - element_source_terms:
    temperature: FEM_DIFF

output:
  output_data_base_name: femHC.e
  output_frequency: 10
  output_node_set: no
  output_variables:
  - dual_nodal_volume
  - temperature

Time_Integrators:
  - StandardTimeIntegrator:
    name: ti_1
    start_time: 0
    termination_step_count: 25
    time_step: 10.0
    time_stepping_type: fixed
    time_step_count: 0
    second_order_accuracy: no
    realms:
    - realm_1
Nalu input file contains the following top-level sections that describe the simulation to be executed.

**Realms**

Realms describe the computational domain (via mesh input files) and the set of physics equations (Low-Mach Navier-Stokes, Heat Conduction, etc.) that are solved over this particular domain. The list can contain multiple computational domains (realms) that use different meshes as well as solve different sets of physics equations and interact via solution transfer. This section also contains information regarding the initial and boundary conditions, solution output and restart options, the linear solvers used to solve the linear system of equations, and solution options that govern the discretization of the equation set.

A special case of a realm instance is the input-output realm; this realm type does not solve any physics equations, but instead serves one of the following purposes:

- provide time-varying boundary conditions to one or more boundaries within one or more of the participating realms in the simulations. In this context, it acts as an input realm.
- extract a subset of data for output at a different frequency from the other realms. In this context, it acts as an output realm.

Inclusion of an input/output realm will require the user to provide the additional transfers section in the Nalu input file that defines the solution fields that are transferred between the realms. See Physics Realm Options for detailed documentation on all Realm options.

**Linear Solvers**

This section configures the solvers and preconditioners used to solve the resulting linear system of equations within Nalu. The linear system convergence tolerance and other controls are set here and can be used with multiple systems across different realms. See Linear Solvers for more details.

**Time Integrators**

This section configures the time integration scheme used (first/second order in time), the duration of simulation, fixed or adaptive timestepping based on Courant number constraints, etc. Each time integration section in this list can accept one or more realms that are integrated in time using that specific time integration scheme. See Time Integration Options for complete documentation of all time integration options available in Nalu.

**Transfers**

An optional section that defines one or more solution transfer definitions between the participating realms during the simulation. Each transfer definition provides a mapping of the to and from realm, part, and the solution field that must be transferred at every timestep during the simulation. See ABL Forcing section for complete documentation of all transfer options available in Nalu.

**Simulations**

Simulations provides the top-level architecture that orchestrates the time-stepping across all the realms and the required equation sets.

**Linear Solvers**

The linear_solvers section contains a list of one or more linear solver settings that specify the solver, preconditioner, convergence tolerance for solving a linear system. Every entry in the YAML list will contain the following entries:

**Note:** The variable in the linear_solvers subsection are prefixed with linear_solvers.name but only the variable name after the period should appear in the input file.
linear_solvers.name
The key used to refer to the linear solver configuration in `equation_systems.solver_system_specification` section.

linear_solvers.type
The type of solver library used.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tpetra</td>
<td>Tpetra data structures and Belos solvers/preconditioners</td>
</tr>
<tr>
<td>hypre</td>
<td>Hypre data structures and Hypre solver/preconditioners</td>
</tr>
</tbody>
</table>

linear_solvers.method
The solver used for solving the linear system.

When `linear_solvers.type` is tpetra the valid options are: gmres, biCgStab, cg. For hypre the valid options are hypre_boomerAMG and hypre_gmres.

Options Common to both Solver Libraries

linear_solvers.preconditioner
The type of preconditioner used.

When `linear_solvers.type` is tpetra the valid options are sgs, mt_sgs, muelu. For hypre the valid options are boomerAMG or none.

linear_solvers.tolerance
The relative tolerance used to determine convergence of the linear system.

linear_solvers.max_iterations
Maximum number of linear solver iterations performed.

linear_solvers.kspace
The Krylov vector space.

linear_solvers.output_level
Verbosity of output from the linear solver during execution.

linear_solvers.write_matrix_files
A boolean flag indicating whether the matrix, the right hand side, and the solution vector are written to files during execution. The matrix files are written in MatrixMarket format. The default value is no.

Additional parameters for Belos Solver/Preconditioners

linear_solvers.muelu_xml_file_name
Only used when the `linear_solvers.preconditioner` is set to muelu and specifies the path to the XML filename that contains various configuration parameters for Trilinos MueLu package.

linear_solvers.recompute_preconditioner
A boolean flag indicating whether preconditioner is recomputed during runs. The default value is yes.

linear_solvers.reuse_preconditioner
Boolean flag. Default value is no.

linear_solvers.summarize_muelu_timer
Boolean flag indicating whether MueLu timer summary is printed. Default value is no.

Additional parameters for Hypre Solver/Preconditioners

The user is referred to Hypre Reference Manual for full details on the usage of the parameters described briefly below. The parameters that start with bamg_ prefix refer to options related to Hypre’s BoomerAMG preconditioner.
linear_solvers.bamg_output_level
   The level of verbosity of BoomerAMG preconditioner. See HYPRE_BoomerAMGSetPrintLevel. Default: 0.

linear_solvers.bamg_coarsen_type
   See HYPRE_BoomerAMGSetCoarsenType. Default: 6

linear_solvers.bamg_cycle_type
   See HYPRE_BoomerAMGSetCycleType. Default: 1

linear_solvers.bamg_relax_type
   See HYPRE_BoomerAMGSetRelaxType. Default: 6

linear_solvers.bamg_relax_order
   See HYPRE_BoomerAMGSetRelaxOrder. Default: 1

linear_solvers.bamg_num_sweeps
   See HYPRE_BoomerAMGSetNumSweeps. Default: 2

linear_solvers.bamg_max_levels
   See HYPRE_BoomerAMGSetMaxLevels. Default: 20

linear_solvers.bamg_strong_threshold
   See HYPRE_BoomerAMGSetStrongThreshold. Default: 0.25

Time Integration Options

Time_Integrators
   A list of time-integration options used to advance the realms in time. Each list entry must contain a YAML mapping with the key indicating the type of time integrator. Currently only one option, StandardTimeIntegrator is available.

   Time_Integrators:
      - StandardTimeIntegrator:
         name: ti_1
         start_time: 0.0
         termination_step_count: 10
         time_step: 0.5
         time_stepping_type: fixed
         time_step_count: 0
         second_order_accuracy: yes
         realms:
            - fluids_realm

time_int.name
   The lookup key for this time integration entry. This name must match the one provided in Simulations section.

time_int.termination_time
   Nalu will stop the simulation once the termination_time has reached.

time_int.termination_step_count
   Nalu will stop the simulation once the specified termination_step_count timesteps have been completed. If both time_int.termination_time and this parameter are provided then this parameter will prevail.

time_int.time_step
   The time step \( \Delta t \) used for the simulation. If time_int.time_stepping_type is fixed this value does not change during the simulation.
time_int.start_time
The starting time step (default: 0.0) when starting a new simulation. Note that this has no effect on restart which is controlled by restart.restart_time in the restart section.

time_int.time_step_count
The starting timestep counter for a new simulation. See restart for restarting from a previous simulation.

time_int.second_order_accuracy
A boolean flag indicating whether second-order time integration scheme is activated. Default: no.

time_int.time_stepping_type
One of fixed or adaptive indicating whether a fixed time-stepping scheme or an adaptive timestepping scheme is used for simulations. See time_step_control for more information on max Courant number based adaptive time stepping.

time_int.realms
A list of realms names. The names entered here must match name used in the realms section. Names listed here not found in realms list will trigger an error, while realms not included in this list but present in realms will not be initialized and silently ignored. This can cause the code to abort if the user attempts to access the specific realm in the transfers section.

Physics Realm Options
As mentioned previously, realms is a YAML list data structure containing at least one Physics Realm Options entry that defines the computational domain (provided as an Exodus-II mesh), the set of physics equations that must be solved over this domain, along with the necessary initial and boundary conditions. Each list entry is a YAML dictionary mapping that is described in this section of the manual. The key subsections of a Realm entry in the input file are

<table>
<thead>
<tr>
<th>Realm subsection</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>equation_systems</td>
<td>Set of physics equations to be solved</td>
</tr>
<tr>
<td>initial_conditions</td>
<td>Initial conditions for the various fields</td>
</tr>
<tr>
<td>boundary_conditions</td>
<td>Boundary condition for the different fields</td>
</tr>
<tr>
<td>material_properties</td>
<td>Material properties (e.g., fluid density, viscosity etc.)</td>
</tr>
<tr>
<td>solution_options</td>
<td>Discretization options</td>
</tr>
<tr>
<td>output</td>
<td>Solution output options (file, frequency, etc.)</td>
</tr>
<tr>
<td>restart</td>
<td>Optional: Restart options (restart time, checkpoint frequency etc.)</td>
</tr>
<tr>
<td>time_step_control</td>
<td>Optional: Parameters determining variable timestepping</td>
</tr>
</tbody>
</table>

In addition to the sections mentioned in the table, there are several additional sections that could be present depending on the specific simulation type and post-processing options requested by the user. A brief description of these optional sections are provided below:

<table>
<thead>
<tr>
<th>Realm subsection</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>turbulence_averaging</td>
<td>Generate statistics for the flow field</td>
</tr>
<tr>
<td>post_processing</td>
<td>Extract integrated data from the simulation</td>
</tr>
<tr>
<td>solution_norm</td>
<td>Compare the solution error to a reference solution</td>
</tr>
<tr>
<td>data_probes</td>
<td>Extract data using probes</td>
</tr>
<tr>
<td>actuator</td>
<td>Model turbine blades/tower using actuator lines</td>
</tr>
<tr>
<td>abl_forcing</td>
<td>Momentum source term to drive ABL flows to a desired velocity profile</td>
</tr>
</tbody>
</table>
Common options

name
The name of the realm. The name provided here is used in the `Time_Integrators` section to determine the
time-integration scheme used for this computational domain.

mesh
The name of the Exodus-II mesh file that defines the computational domain for this realm. Note that only
the base name (i.e., without the `.NPROCS.IPROC` suffix) is provided even for simulations using previously
decomposed mesh/restart files.

automatic_decomposition_type
Used only for parallel runs, this indicates how the a single mesh database must be decomposed amongst the MPI
processes during initialization. This option should not be used if the mesh has already been decomposed by an
external utility. Possible values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rcb</td>
<td>recursive coordinate bisection</td>
</tr>
<tr>
<td>rib</td>
<td>recursive inertial bisection</td>
</tr>
<tr>
<td>linear</td>
<td>elements in order first n/p to proc 0, next to proc 1.</td>
</tr>
<tr>
<td>cyclic</td>
<td>elements handed out to id % proc_count</td>
</tr>
</tbody>
</table>

activate_aura
A boolean flag indicating whether an extra element is ghosted across the processor boundaries. The default
value is no.

use_edges
A boolean flag indicating whether edge based discretization scheme is used instead of element based schemes.
The default value is no.

polynomial_order
An integer value indicating the polynomial order used for higher-order mesh simulations. The default value
is 1. When polynomial_order is greater than 1, the Realm has the capability to promote the mesh to
higher-order during initialization.

solve_frequency
An integer value indicating how often this realm is solved during time integration. The default value is 1.

support_inconsistent_multi_state_restart
A boolean flag indicating whether restarts are allowed from files where the necessary field states are missing. A
typical situation is when the simulation is restarted using second-order time integration but the restart file was
created using first-order time integration scheme.

activate_memory_diagnostic
A boolean flag indicating whether memory diagnostics are activated during simulation. Default value is no.

balance_nodes
A boolean flag indicating whether node balancing is performed during simulations. See also
`balance_node_iterations` and `balance_nodes_target`.

balance_node_iterations
The frequency at which node rebalancing is performed. Default value is 5.

balance_node_target
The target balance ratio. Default value is 1.0.
Equation Systems

**equation_systems** subsection defines the physics equation sets that are solved for this realm and the linear
solvers used to solve the different linear systems.

**Note:** The variable in the `equation_systems` subsection are prefixed with `equation_systems.name` but only the variable name after the period should appear in the input file.

**equation_systems.name**
A string indicating the name used in log messages etc.

**equation_systems.max_iterations**
The maximum number of non-linear iterations performed during a timestep that couples the different equation systems.

**equation_systems.solver_system_specification**
A mapping containing `field_name: linear_solver_name` that determines the linear solver used for solving the linear system. Example:

```yaml
solver_system_specification:
  pressure: solve_continuity
  enthalpy: solve_scalar
  velocity: solve_scalar
```

The above example indicates that the linear systems for the enthalpy and momentum (velocity) equations are solved by the linear solver corresponding to the tag `solve_scalar` in the `linear_systems` entry, whereas the continuity equation system (pressure Poisson solve) should be solved using the linear solver definition corresponding to the tag `solve_continuity`.

**equation_systems.systems**
A list of equation systems to be solved within this realm. Each entry is a YAML mapping with the key corresponding to a pre-defined equation system name that contains additional parameters governing the solution of this equation set. The predefined equation types are

<table>
<thead>
<tr>
<th>Equation system</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LowMachEOM</td>
<td>Low-Mach Momentum and Continuity equations</td>
</tr>
<tr>
<td>Enthalpy</td>
<td>Energy equations</td>
</tr>
<tr>
<td>ShearStressTransport</td>
<td>$k - \omega$ SST equation set</td>
</tr>
<tr>
<td>TurbKineticEnergy</td>
<td>TKE equation system</td>
</tr>
<tr>
<td>MassFraction</td>
<td>Mass Fraction</td>
</tr>
<tr>
<td>MixtureFraction</td>
<td>Mixture Fraction</td>
</tr>
<tr>
<td>MeshDisplacement</td>
<td>Arbitrary Mesh Displacement</td>
</tr>
</tbody>
</table>

An example of the equation system definition for ABL precursor simulations is shown below:

```yaml
# Equation systems example for ABL precursor simulations
systems:
- LowMachEOM:
  name: myLowMach
  max_iterations: 1
  convergence_tolerance: 1.0e-5
- TurbKineticEnergy:
  name: myTke
```

(continues on next page)
### Initial conditions

The `initial_conditions` sub-sections defines the conditions used to initialize the computational fields if they are not provided via the mesh file. Two types of field initializations are currently possible:

- **constant**: Initialize the field with a constant value throughout the domain;
- **user_function**: Initialize the field with a pre-defined user function.

The snippet below shows an example of both options available to initialize the various computational fields used for ABL simulations. In this example, the pressure and turbulent kinetic energy fields are initialized using a constant value, whereas the velocity field is initialized by the user function `boundary_layer_perturbation` that imposes sinusoidal fluctuations over a velocity field to trip the flow.

```yaml
initial_conditions:
  - constant: ic_1
target_name: [fluid_part]value:
  pressure: 0.0turbulent_ke: 0.1

  - user_function: ic_2
target_name: [fluid_part]user_function_name: velocity: boundary_layer_perturbation
user_function_parameters:
  velocity: [1.0, 0.0075398, 0.0075398, 50.0, 8.0]
```

**initial_conditions.constant**

This input parameter serves two purposes: 1. it indicates the type (constant), and 2. provides the custom name for this condition. In addition to the `initial_conditions.target_name` this section requires another entry `value` that contains the mapping of (field_name, value) as shown in the above example.

**initial_conditions.user_function**

Indicates that this block of YAML input must be parsed as input for a user defined function.

**initial_conditions.target_name**

A list of element blocks (parts) where this initial condition must be applied.

### Boundary Conditions

The `boundary_conditions` subsection of the physics Realm contains a list of boundary conditions that must be used during the simulation. Each entry of this list is a YAML mapping entry with the key of the form `<type>_boundary_condition` where the available types are:

- **inflow**
• open – Outflow BC
• wall
• symmetry
• periodic
• non_conformal – e.g., BC across sliding mesh interfaces
• overset – overset mesh assembly description

All BC types require `bc.target_name` that contains a list of side sets where the specified BC is to be applied. Additional information necessary for certain BC types are provided by a sub-dictionary with the key `<type>_user_data`: that contains the parameters necessary to initialize a specific BC type.

**bc.target_name**
A list of side set part names where the given BC type must be applied. If a single string value is provided, it is converted to a list internally during input file processing phase.

### Inflow Boundary Condition

```
- inflow_boundary_condition: bc_inflow
  target_name: inlet
  inflow_user_data:
    velocity: [0.0, 0.0, 1.0]
```

### Open Boundary Condition

```
- open_boundary_condition: bc_open
  target_name: outlet
  open_user_data:
    velocity: [0, 0, 0]
    pressure: 0.0
```

### Wall Boundary Condition

**bc.wall_user_data**
This subsection contains specifications as to whether wall models are used, or how to treat the velocity at the wall when there is mesh motion.

The following input file snippet shows an example of using an ABL wall function at the terrain during ABL simulations. See theory_abl_wall_function for more details on the actual implementation.

```
# Wall boundary condition example for ABL terrain modeling
- wall_boundary_condition: bcTerrain
  target_name: terrain
  wall_user_data:
    velocity: [0, 0, 0]
    use_abl_wall_function: yes
    heat_flux: 0.0
    roughness_height: 0.2
    gravity_vector_component: 3
    reference_temperature: 300.0
```

1.2. Running Nalu
The entry `gravity_vector_component` is an integer that specifies the component of the gravity vector, defined in `solution_options.gravity`, that should be used in the definition of the Monin-Obukhov length scale calculation. The entry `reference_temperature` is the reference temperature used in calculation of the Monin-Obukhov length scale.

When there is mesh motion involved the wall boundary must specify a user function to determine relative velocity at the surface.

```yaml
# Wall boundary specification with mesh motion
- wall_boundary_condition: bc_cylinder
target_name: cylinder_wall
wall_user_data:
  user_function_name:
  velocity: wind_energy
user_function_string_parameters:
  velocity: [cylinder]
```

The misnomer `wind_energy` is a pre-defined `user_function` that provides the correct velocity at the wall accounting for relative mesh motion with respect to fluid and doesn’t specifically deal with any wind energy simulation. The `user_function_string_parameters` contains a YAML mapping of fields, e.g. velocity, to the list of names provided in the `soln_opts.mesh_motion` entry in the `solution_options` section.

Example of wall boundary with a custom user function for temperature at the wall

```yaml
- wall_boundary_condition: bc_6
target_name: surface_6
wall_user_data:
  user_function_name:
  temperature: steady_2d_thermal
```

**Symmetry Boundary Condition**

Requires no additional input other than `bc.target_name`.

```yaml
- symmetry_boundary_condition: bc_top
target_name: top
symmetry_user_data:
```

**Periodic Boundary Condition**

Unlike the other BCs described so far, the parameter `bc.target_name` behaves differently for the periodic BC. This parameter must be a list containing exactly two entries: the boundary face pair where periodicity is enforced. The nodes on these planes must coincide after translation in the direction of periodicity. This BC also requires a `periodic_user_data` section that specifies the search tolerance for locating node pairs.

```yaml
periodic_user_data
- periodic_boundary_condition: bc_east_west
target_name: [east, west]
periodic_user_data:
  search_tolerance: 0.0001
```
Non-Conformal Boundary

Like the periodic BC, the parameter `bc.target_name` must be a list with exactly two entries that specify the boundary plane pair forming the non-conformal boundary.

```plaintext
- non_conformal_boundary_condition: bc_left
target_name: [surface_77, surface_7]
non_conformal_user_data:
  expand_box_percentage: 10.0
```

Material Properties

**material_properties**

The section provides the properties required for various physical quantities during the simulation. A sample section used for simulating ABL flows is shown below

```plaintext
material_properties:
  target_name: [fluid_part]

constant_specification:
  universal_gas_constant: 8314.4621
  reference_pressure: 101325.0

reference_quantities:
  - species_name: Air
    mw: 29.0
    mass_fraction: 1.0

specifications:
  - name: density
    type: constant
    value: 1.178037722969475
  - name: viscosity
    type: constant
    value: 1.6e-5
  - name: specific_heat
    type: constant
    value: 1000.0
```

**material_properties.target_name**

A list of element blocks (parts) where the material properties are applied. This list should ideally include all the parts that are referenced by `initial_conditions.target_name`.

**material_properties.constant_specification**

Values for several constants used during the simulation. Currently the following properties are defined:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>universal_gas_constant</td>
<td>Ideal gas constant $R$</td>
</tr>
<tr>
<td>reference_temperature</td>
<td>Reference temperature for simulations</td>
</tr>
<tr>
<td>reference_pressure</td>
<td>Reference pressure for simulations</td>
</tr>
</tbody>
</table>

**material_properties.reference_quantities**

Provides material properties for the different species involved in the simulation.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>species_name</td>
<td>Name used to lookup properties</td>
</tr>
<tr>
<td>mw</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>mass_fraction</td>
<td>Mass fraction</td>
</tr>
<tr>
<td>primary_mass_fraction</td>
<td></td>
</tr>
<tr>
<td>secondary_mass_fraction</td>
<td></td>
</tr>
<tr>
<td>stoichiometry</td>
<td></td>
</tr>
</tbody>
</table>

**material_properties.specifications**

A list of material properties with the following parameters

**material_properties.specifications.name**

The name used for lookup, e.g., density, viscosity, etc.

**material_properties.specifications.type**

The type can be one of the following

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>Constant value property</td>
</tr>
<tr>
<td>polynomial</td>
<td>Property determined by a polynomial function</td>
</tr>
<tr>
<td>ideal_gas</td>
<td>Function of temperature, pressure, and mixture molecular weight</td>
</tr>
<tr>
<td>hdf5table</td>
<td>Lookup from an HDF5 table</td>
</tr>
<tr>
<td>mixture_fraction</td>
<td>Property determined by the mixture fraction</td>
</tr>
<tr>
<td>geometric</td>
<td></td>
</tr>
<tr>
<td>generic</td>
<td></td>
</tr>
</tbody>
</table>

Examples

1. Specification for density using the ideal gas. The code determines what is reference and what is transported

```yaml
specifications:
  - name: density
    type: ideal_gas
```

2. Specification of viscosity as a function of temperature

```yaml
- name: viscosity
  type: polynomial
  coefficient_declaration:
    - species_name: Air
      coefficients: [1.7894e-5, 273.11, 110.56]
```

The `species_name` must correspond to the entry in `reference quantities` to lookup molecular weight information.

3. Specification via `hdf5table`

```yaml
material_properties:
  table_file_name: SLFM_CGauss_C2H4_2Mean_2ScaledVarianceMean_logChiMean.h5

  specifications:
    - name: density
      type: hdf5table
      independent_variable_set: [mixture_fraction, scalar_variance, scalar_dissipation]
```

(continues on next page)
4. Specification via mixture_fraction

```
material_properties:
  target_name: block_1

  specifications:
  - name: density
    type: mixture_fraction
    primary_value: 0.163e-3
    secondary_value: 1.18e-3
  - name: viscosity
    type: mixture_fraction
    primary_value: 1.967e-4
    secondary_value: 1.85e-4
```

**Output Options**

**output**

Specifies the frequency of output, the output database name, etc.

Example:

```
output:
  output_data_base_name: out/ABL.neutral.e
  output_frequency: 100
  output_node_set: no
  output_variables:
    - velocity
    - pressure
    - temperature
```

**output.output_data_base_name**

The name of the output Exodus-II database. Can specify a directory relative to the run directory, e.g., out/nalu_results.e. The directory will be created automatically if one doesn’t exist. Default: output.e

**output.output_frequency**

Nalu will write the output file every output_frequency timesteps. Note that currently there is no option to output results at a specified simulation time. Default: 1.

**output.output_start**

Nalu will start writing output past the output_start timestep. Default: 0.
**output.output_forced_wall_time**
Force output at a specified *wall-clock time* in seconds.

**output.output_node_set**
Boolean flag indicating whether nodesets, if present, should be output to the output file along with element blocks.

**output.compression_level**
Integer value indicating the compression level used. Default: 0.

**output.output_variables**
A list of field names to be output to the database. The field variables can be node or element based quantities.

**Restart Options**

**restart**
This section manages the restart for this realm object.

**restart.restart_data_base_name**
The filename for restart. Like `output`, the filename can contain a directory and it will be created if not already present.

**restart.restart_time**
If this variable is present, it indicates that the current run will restart from a previous simulation. This requires that the `mesh` be a restart file with all the fields necessary for the equation sets defined in the `equation_systems.systems`. Nalu will restart from the closest time available in the `mesh` to `restart_time`. The timesteps available in a restart file can be examined by looking at the `time_whole` variable using the `ncdump` utility.

**Note:** The restart database used for restarting a simulation is the `mesh` parameter. The `restart_data_base_name` parameter is used exclusively for outputs.

**restart.restart_frequency**
The frequency at which restart files are written to the disk. Default: 500 timesteps.

**restart.restart_start**
Nalu will write a restart file after `restart_start` timesteps have elapsed.

**restart.restart_forced_wall_time**
Force writing of restart file after specified *wall-clock time* in seconds.

**restart.restart_node_set**
A boolean flag indicating whether nodesets are output to the restart database.

**restart.max_data_base_step_size**
Default: 100,000.

**restart.compression_level**
Compression level. Default: 0.

**Time-step Control Options**

**time_step_control**
This optional section specifies the adaptive time stepping parameters used if `time_int.time_stepping_type` is set to `adaptive`. 

time_step_control:
  target_courant: 2.0
  time_step_change_factor: 1.2

**dtctrl.target_courant**

Maximum Courant number allowed during the simulation. Default: 1.0

**dtctrl.time_step_change_factor**

Maximum allowable increase in $dt$ over a given timestep.

**Actuator**

**actuator** subsection defines the inputs for actuator line simulations. A sample section is shown below for running actuator line simulations coupled to OpenFAST with two turbines.

```yaml
actuator:
  type: ActLinePointDrag
  search_method: stk_kdtree
  search_target_part: Unspecified-2-HEX

specifications:
  - turbine_name: machine_one
    radius: 0.5
    omega: 1.57
    gaussian_decay_radius: 1.0
    gaussian_decay_target: 0.01
    tip_coordinates: [2.5, 2.0, 0.0]
    tail_coordinates: [2.5, -2.0, 0.0]
    number_of_points: 11
```

**actuator.type**

Type of actuator source. Options are only ActLinePointDrag.

**actuator.search_method**

String specifying the type of search method used to identify the nodes within the search radius of the actuator points. Options are only stk_kdtree.

**search_target_part**

String or an array of strings specifying the parts of the mesh to be searched to identify the nodes near the actuator points.

**turbine_name**

A unique name for each line point drag.

**radius**

Particle size.

**omega**

Rotation rate.

**gaussian_decay_radius**

Size of decay.

**gaussian_decay_target**

Clipped value for PDF.
tip_coordinates
Coordinates for tip.

tail_coordinates
Coordinates for tail.

number_of_points
Number of point-particles along the line.

**Turbulence averaging**

*turbulence_averaging* subsection defines the turbulence post-processing quantities and averaging procedures. A sample section is shown below:

```plaintext
turbulence_averaging:
  forced_reset: no
  time_filter_interval: 100000.0

  averaging_type: nalu_classic/moving_exponential

  specifications:
  - name: turbulence_postprocessing
    target_name: interior
    reynolds_averaged_variables:
      - velocity

    favre_averaged_variables:
      - velocity
      - resolved_turbulent_ke

    compute_tke: yes
    compute_reynolds_stress: yes
    compute_resolved_stress: yes
    compute_temperature_resolved_flux: yes
    compute_sfs_stress: yes
    compute_temperature_sfs_flux: yes
    compute_q_criterion: yes
    compute_vorticity: yes
    compute_lambda_ci: yes
```

**Note:** The variable in the *turbulence_averaging* subsection are prefixed with *turbulence_averaging_. name* but only the variable name after the period should appear in the input file.

**turbulence_averaging.forced_reset**
A boolean flag indicating whether the averaging of all quantities in the turbulence averaging section is reset. If this flag is true, the running average is set to zero.

**turbulence_averaging.averaging_type**
This parameter sets the choice of the running average type. Possible values are:

- **nalu_classic** “Sawtooth” average. The running average is set to zero each time the time filter width is reached and a new average is calculated for the next time interval.
moving_exponential  “Moving window” average where the window size is set to to the time filter width. The contribution of any quantity before the moving window towards the average value reduces exponentially with every time step.

turbulence_averaging.time_filter_interval
Number indicating the time filter size over which to calculate the running average. This quantity is used in different ways for each filter discussed above.

turbulence_averaging.specifications
A list of turbulence postprocessing properties with the following parameters

turbulence_averaging.specifications.name
The name used for lookup and logging.

turbulence_averaging.specifications.target_name
A list of element blocks (parts) where the turbulence averaging is applied.

turbulence_averaging.specifications.reynolds_average_variables
A list of field names to be averaged.

turbulence_averaging.specifications.favre_average_variables
A list of field names to be Favre averaged.

turbulence_averaging.specifications.compute_tke
A boolean flag indicating whether the turbulent kinetic energy is computed. The default value is no.

turbulence_averaging.specifications.compute_reynolds_stress
A boolean flag indicating whether the reynolds stress is computed. The default value is no.

turbulence_averaging.specifications.compute_resolved_stress
A boolean flag indicating whether the average resolved stress is computed as \( \bar{\rho} \bar{u}_i \bar{u}_j \). The default value is no. When this option is turned on, the Favre average of the resolved velocity, \( \bar{\rho} \bar{u}_j \), is computed as well.

turbulence_averaging.specifications.compute_temperature_resolved_flux
A boolean flag indicating whether the average resolved temperature flux is computed as \( \bar{\rho} \bar{u}_i \bar{\theta} \). The default value is no. When this option is turned on, the Favre average of the resolved temperature, \( \bar{\rho} \bar{\theta} \), is computed as well.

turbulence_averaging.specifications.compute_sfs_stress
A boolean flag indicating whether the average sub-filter scale stress is computed. The default value is no. The sub-filter scale stress model is assumed to be of an eddy viscosity type and the turbulent viscosity computed by the turbulence model is used. The sub-filter scale kinetic energy is used to determine the isotropic component of the sub-filter stress. As described in the section Conservation of Momentum, the Yoshizawa model is used to compute the sub-filter kinetic energy when it is not transported.

turbulence_averaging.specifications.compute_temperature_sfs_flux
A boolean flag indicating whether the average sub-filter scale flux of temperature is computed. The default value is no. The sub-filter scale stress model is assumed to be of an eddy diffusivity type and the turbulent diffusivity computed by the turbulence model is used along with a constant turbulent Prandtl number obtained from the Realm.

turbulence_averaging.specifications.compute_favre_stress
A boolean flag indicating whether the Favre stress is computed. The default value is no.

turbulence_averaging.specifications.compute_favre_tke
A boolean flag indicating whether the Favre stress is computed. The default value is no.

turbulence_averaging.specifications.compute_q_criterion
A boolean flag indicating whether the q-criterion is computed. The default value is no.

turbulence_averaging.specifications.compute_vorticity
A boolean flag indicating whether the vorticity is computed. The default value is no.
turbulence_averaging.specifications.compute_lambda_ci
   A boolean flag indicating whether the Lambda2 vorticity criterion is computed. The default value is no.

Data probes

data_probes
   data_probes subsection defines the data probes. A sample section is shown below

```plaintext
data_probes:
   output_frequency: 100
   search_method: stk_octree
   search_tolerance: 1.0e-3
   search_expansion_factor: 2.0

specifications:
   - name: probe_bottomwall
     from_target_part: bottomwall

     line_of_site_specifications:
       - name: probe_bottomwall
         number_of_points: 100
         tip_coordinates: [-6.39, 0.0, 0.0]
         tail_coordinates: [4.0, 0.0, 0.0]

     output_variables:
       - field_name: tau_wall
         field_size: 1
       - field_name: pressure

specifications:
   - name: probe_profile
     from_target_part: interior

     line_of_site_specifications:
       - name: probe_profile
         number_of_points: 100
         tip_coordinates: [0, 0.0, 0.0]
         tail_coordinates: [0.0, 0.0, 1.0]

     output_variables:
       - field_name: velocity
         field_size: 3
       - field_name: reynolds_stress
         field_size: 6
```

Note: The variable in the data_probes subsection are prefixed with data_probes.name but only the variable name after the period should appear in the input file.

data_probes.output_frequency
   Integer specifying the frequency of output.

data_probes.search_method
   String specifying the search method for finding nodes to transfer field quantities to the data probe lineout.
**data_probes.search_tolerance**
Number specifying the search tolerance for locating nodes.

**data_probes.search_expansion_factor**
Number specifying the factor to use when expanding the node search.

**data_probes.specifications**
A list of data probe properties with the following parameters

**data_probes.specifications.name**
The name used for lookup and logging.

**data_probes.specifications.from_target_part**
A list of element blocks (parts) where to do the data probing.

**data_probes.specifications.line_of_site_specifications**
A list specifications defining the lineout

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>File name (without extension) for the data probe</td>
</tr>
<tr>
<td>number_of_points</td>
<td>Number of points along the lineout</td>
</tr>
<tr>
<td>tip_coordinates</td>
<td>List containing the coordinates for the start</td>
</tr>
<tr>
<td></td>
<td>of the lineout</td>
</tr>
<tr>
<td>tail_coordinates</td>
<td>List containing the coordinates for the end of the</td>
</tr>
<tr>
<td></td>
<td>lineout</td>
</tr>
</tbody>
</table>

**data_probes.specifications.output_variables**
A list of field names (and field size) to be probed.

**Post-processing**

**post_processing**
post_processing subsection defines the different post-processing options. A sample section is shown below

```
post_processing:
  - type: surface
    physics: surface_force_and_moment
    output_file_name: results/wallHump.dat
    frequency: 100
    parameters: [0, 0]
    target_name: bottomwall
```

**Note:** The variable in the post_processing subsection are prefixed with post_processing.name but only the variable name after the period should appear in the input file.

**post_processing.type**
Type of post-processing. Possible values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface</td>
<td>Post-processing of surface quantities</td>
</tr>
</tbody>
</table>

**post_processing.physics**
Physics to be post-processing. Possible values are:
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface_force_and_moment</td>
<td>Calculate surface forces and moments</td>
</tr>
<tr>
<td>surface_force_and_moment_wall_function</td>
<td>Calculate surface forces and moments when using a wall function</td>
</tr>
</tbody>
</table>

**post_processing.output_file_name**
String specifying the output file name.

**post_processing.frequency**
Integer specifying the frequency of output.

**post_processing.parameters**
Parameters for the physics function. For the *surface_force_and_moment* type functions, this is a list specifying the centroid coordinates used in the moment calculation.

**post_processing.target_name**
A list of element blocks (parts) where to do the post-processing

**ABL Forcing**

**abl_forcing**

*abl_forcing* allows the user to specify desired velocities and temperatures at different heights. These velocities and temperatures are enforced through the use of source in the momentum and enthalpy equations. The *abl_forcing* option needs to be specified in the *momentum* and/or *enthalpy* source blocks:

```
- source_terms:
  - momentum: abl_forcing
  - enthalpy: abl_forcing
```

This option allows the code to implement source terms in the momentum and/or enthalpy equations. A sample section is shown below

```
abl_forcing:
  search_method: stk_kdtree
  search_tolerance: 0.0001
  search_expansion_factor: 1.5
  output_frequency: 1

  from_target_part: [fluid_part]

  momentum:
    type: computed
    relaxation_factor: 1.0
    heights: [250.0, 500.0, 750.0]
    target_part_format: "zplane_%06.1f"

    # The velocities at each plane
    # Each list include a time and the velocities for each plane
    # Notice that the total number of elements in each list will be
    # number of planes + 1
    velocity_x:
    - [0.0, 10.0, 5.0, 15.0]
    - [100000.0, 10.0, 5.0, 15.0]

    velocity_y:
```

(continues on next page)
velocity_z:
- [0.0, 0.0, 0.0, 0.0]
- [100000.0, 0.0, 0.0, 0.0]

temperature:
  type: computed
  relaxation_factor: 1.0
  heights: [250.0, 500.0, 750.0]
  target_part_format: "zplane_%06.1f"

temperature:
- [0.0, 300.0, 280.0, 310.0]
- [100000.0, 300.0, 280.0, 310.0]

Note: The variables in the abl_forcing subsection are prefixed with abl_forcing.name but only the variable name after the period should appear in the input file.

abl_forcing.search_method
This specifies the search method algorithm within the stk framework. The default option stk_kdtree is recommended.

abl_forcing.search_tolerance
This is the tolerance specified for the search_method algorithm. A default value of 0.0001 is recommended.

abl_forcing.search_expansion_factor
This option is related to the stk search algorithm. A value of 1.5 is recommended.

abl_forcing.output_frequency
This is the frequency at which the source term is written to the output value. A value of 1 means the source term will be written to the output file every time-step.

Note: There are now two options in the following inputs. The can be momentum and/or temperature.

abl_forcing.momentum.computed
This option allows the user to choose if a momentum source is computed from a desired velocity (computed) or if a user defined source term is directly applied into the momentum equation (user_defined).

abl_forcing.momentum.relaxation_factor
This is a relaxation factor which can be used to under/over-relax the momentum source term. The default value is 1.

abl_forcing.momentum.heights
This is a list containing the planes at which the forcing should be implemented. Each input is the height for that plane. This is the naming convention in the mesh file.

abl_forcing.momentum.target_part_format
This is the format in which the planes are saved in the mesh file.

abl_forcing.momentum.velocity_x
A set of lists containing the time in the first element, followed by the desired velocity at each plane in the x direction.
abl_forcing.momentum.velocity_y
A set of lists containing the time in the first element, followed by the desired velocity at each plane in the \( y \) direction.

abl_forcing.momentum.velocity_z
A set of lists containing the time in the first element, followed by the desired velocity at each plane in the \( z \) direction.

Note: The temperature has the same inputs as the momentum source (abl_forcing.temperature.type, abl_forcing.temperature.relaxation_factor, abl_forcing.temperature.heights, and abl_forcing.temperature.target_part_format) which take the same options.

abl_forcing.temperature.temperature
A set of lists containing the time in the first element, followed by the desired temperature at each plane.

1.2.4 Transfers

transfers
Transfers section describes the search and mapping operations to be performed between participating realms within a simulation.

1.2.5 Simulations

simulations
This is the top-level section that orchestrates the entire execution of Nalu.

1.2.6 Lessons Learned from Meshing the McAlister Case

Author Chris Bruner, Dept. 01515, Sandia National Laboratories

Introduction

The series of wind-tunnel tests described by McAlister & Takahashi [McAl1991] have become something of a canonical test case in the rotorcraft community. This is because the tests are well-documented and investigate both tip and aspect ratio effects, and because the symmetric wing section used is fairly representative of those typically found on rotorcraft.

This case also serves as a reasonably good test case for wind energy applications as there are measurements of the trailing tip vortex far downstream, up to 13 chords. This is important to understand the grid requirements of our unstructured approach to modeling a full-scale blade-resolved rotor and tower system.

Meshes

The meshes for this case are mixed structured/unstructured (hybrid) topologies. The mesh in the immediate vicinity of the wing uses a quad-dominant approach to produce mostly hexahedra in the wing boundary layer. This has most of the advantages of an unstructured triangular mesh in terms of ease of meshing and face isotropy in the interior, but has fewer elements for a comparable node count. A potential disadvantage is that there is no way to produce a mixed hex/tet mesh without the introduction of pyramid elements, which can cause convergence and accuracy problems. There is also a refined region around the tip inside the wing box to ensure resolution of the formation of the wing tip vortex.
Further downstream, there is a fully structured hex mesh, expanding slightly and covering the path of the tip vortex downstream as measured in the experiment.

The balance of the test section mesh is unstructured tets (except as noted below), while another structured block is used upstream of the test section.

The meshes first produced used the Discontinuous Galerkin (DG) non-conformal interface between the hexahedral tip vortex mesh and the fully unstructured test section mesh. Due to the relative novelty of the DG approach and our lack of familiarity with its performance in Nalu, it was decided that a more conservative traditional, conformal interface between the blocks was preferable. Therefore, the tetrahedral test section block interfaces to the hexahedral tip vortex block and the upstream block using node-matched pyramid elements.

**Notes on Geometry**

- The trailing edge geometry of the NACA0018 airfoil isn’t given in either the McAlister report nor in the original NACA publications describing it. Therefore, for ease of meshing, a rounded trailing edge was used.

- In order to capture at least the gross blockage effects, the model support structure in the wind tunnel is modeled, and the tunnel walls are at the correct locations. However, in and effort to keep the mesh size low, the tunnel walls and the support are modeled as slip walls and not as viscous.

- Most of the McAlister cases of interest were performed using a square wingtip. The initial mesh, however, uses the rounded tip described in McAlister. We will eventually produce a square tip mesh as this is both more interesting and has more-complete results.

**Surface Mesh**

Fig. 1.1: The surface mesh near the tip, as viewed from above.
Fig. 1.2: A close-up view of the tip and trailing edge, showing rounded tip and trailing edge and quad-dominant surface mesh.

Statistics of Current Mesh (grid07_conformal10.exo)

Node count: 58M
Element Count: 192M total, consisting of:
  • 158M tets
  • 2.5M pyramids
  • 1.1M wedges
  • 30M hexes
Max. Centroid Skew: 0.866; 52 > 0.8
Max. Included Angle: 177 degrees; 7 > 170 degrees
Max. Volume Ratio: 22; 12 > 20
Max. Aspect Ratio: 346
Wall Spacing on Wing: \(8.8 \times 10^{-5}\) m
T-Rex Growth Rate: 1.2
Full/Max Layers in Tip Block: 19/19 (limited to preserve quality)
Full/Max Layers in Wing Block: 19/33
Lessons Learned

- We need a lot of resolution to resolve and advect the tip vortex: on the order of 2–3mm edge length.

- Due to the mathematics of physical space, small changes in the maximum edge length in a block lead to large changes in the final mesh size. For example, changing the maximum edge length from 0.0025m to 0.003m produces nearly a factor of 2 difference in the element count in the isotropic portion of the mesh: \((0.003/0.0025)^3 \approx 1.73\).

- Heuristically, volume ratios should ideally be < 20. Slightly larger volume ratios are acceptable as long as there are no steep gradients passing through these elements.

- Aspect ratios should be < 1000:1

- Centroid skewness is a better measure than the other skewness metrics as it is more even across element topologies
  - equiangle skewness is also OK, but is stricter and can give misleadingly high readings for some tets
  - equivolume skewness is useless for tets

- Centroid skewness should be < 0.8; however, skewness as high as the low 0.9s (usually associated with topology transitions) is acceptable as long as:
  - the skewed cells are far away from large gradients; and
  - there are no more than a handful.

General Pointwise Tips

- Maximum aspect ratio for quads in domains should be \(\leq 4\) for good quality extrusions.

- Maximum included angle should be \(\leq 170\) degrees. The usual exceptions for regions with small gradients should apply here, but there may be additional restrictions due to the elliptic nature of the incompressible flow equations.

- It can be beneficial to push poor quality cells out of the boundary layer by increasing the minimum number of T-Rex layers.

- One can set the maximum number of layers to prevent different numbers of layers in a block and its adjacent domains. This can eliminate some poor-quality tetrahedra.

References

1.2.7 Examples

Here we describe any examples we have for users to try running Nalu.

1.2.8 Tutorials

Here we describe any tutorials that may be further in-depth than examples.
2.1 Testing Nalu

Nalu’s regression tests and unit tests are run nightly using the GCC and Intel compilers against the Trilinos master and development branches on a machine at NREL. The results can be seen at the CDash Nalu website.

2.1.1 Running Tests Locally

The nightly tests are implemented using CTest and these same tests are available to developers to run locally as well. Due to the nature of error propagation of calculations in computers, results of regression testing can be difficult to keep consistent. Output from Nalu can vary from established reference data for the regression tests based on the compiler you are using, the types of optimizations set, and the versions of the third-party libraries Nalu utilizes, along with the blas/lapack implementation in use. Therefore it may make sense when you checkout Nalu to create your own reference data for the tests for the machine and configuration you are using, which is described later in this document. Or you can use a lower tolerance when running the tests. At the moment, a single tolerance is chosen in which to use for all the tests. The following instructions will describe how to run Nalu’s tests.

Since Nalu’s tests require a large amount of data (meshes), this data is hosted in a separate repository from Nalu. This mesh repo is set as a submodule in the reg_tests/mesh directory in the main Nalu repository. Submodule repos are not checked out by default, so either use `git submodule init` and then `git submodule update` to clone it in your checkout of Nalu, or when you first clone Nalu you can also use `git clone --recursive <repo_url>` to checkout all submodules as well.

Once this submodule is initialized and cloned, you will need to configure Nalu with testing on. To configure Nalu with testing enabled, in Nalu’s existing build directory, we will run this command:

```
cmake -DTrilinos_DIR:PATH=`spack location -i nalu-trilinos` \
-DYAML_DIR:PATH=`spack location -i yaml-cpp` \
-DENABLE_TESTS:BOOL=ON \
.. 
```

Note we have chosen to originally build Nalu with Spack in this case, hence the use of `spack location -i <package>` to locate our Yaml and Trilinos installations. Then we use `-DENABLE_TESTS:BOOL=ON` to enable CTest. Once Nalu is configured, you should be able to run the tests by building Nalu in the build directory, and running `make test` or `ctest`. Looking at `ctest -h` will show you many ways you can run tests and choose which tests to run.

There are advantages to using CTest, such as being able to run subsets of the tests, or tests matching a particular regular expression for example. To do so, in the build directory, you can run `ctest -R femHC` to run the test matching the femHC regular expression. Other useful capabilities are `ctest --output-on-failure` to see test outputs when they fail, `ctest --rerun-failed` to only run the tests that previously failed, `ctest --print-labels` to see the test labels, and `ctest -L unit` to run the tests with label ‘unit’ for example. All testing related log files
and output can be seen in Nalu/build/Testing/Temporary and Nalu/build/reg_tests after the test have been run.

To define your own tolerance for tests, at configure time, add \texttt{-DTEST_TOLERANCE=0.0001} for example to the Nalu CMake configure line.

### Updating Reference Data for Your Machine

When running the tests, the norms for each test are the output and they are ‘diffed’ against the ‘gold’ norms that we have established for each test. To dictate whether or not a test passes, we use a chosen tolerance in which we allow the results to deviate from the ‘gold’ norm. As stated earlier, these ‘gold’ norms are not able to reflect every configuration of Nalu, per compiler, optimization, TPL versions, blas/lapack version, etc. This tolerance is currently defined in the \texttt{CMakeLists.txt} in Nalu’s \texttt{reg_tests} directory. This tolerance can also be passed into Nalu at configure time using \texttt{-DTEST_TOLERANCE=0.0000001} for example. To update the ‘gold’ norms locally to your configuration, merely run the tests once, and copy the *.norm files in the build/reg_tests/test_files directory to the corresponding test location in \texttt{reg_tests/test_files} while overwriting the current ‘gold’ norms.

In regards to ‘official’ gold norms, Linux gcc is currently used. For the current list of TPLs, refer to the current list.

#### 2.1.2 Adding Tests to Nalu

The testing infrastructure is almost completely confined to the \texttt{reg_tests} directory. To add a test to Nalu, we need to add the test name, and create a test directory to place the input files and gold norms for the test. First, the test itself can be added to the list of CTes tests by adding a line to the \texttt{CTestList.cmake} file. For a single regression test, provided it is similar to the categories shown at the top of the \texttt{CTestList.cmake} file, it can likely be added with a single line using the test name and amount of processes you would like to run the test with and choosing the correct function to use. For example:

\begin{verbatim}
add_test_r(mytest 6)
\end{verbatim}

After this has been done, in the \texttt{reg_tests/test_files} directory, you should add a directory corresponding to your test name and include the input file, \texttt{mytest.i}, and reference output file \texttt{mytest.norm.gold}. If you are using an xml file that doesn’t exist in the xml directory, you will need to commit that as well.

To see commands used when running the tests, see the functions at the top of the \texttt{CTestList.cmake} file. These functions ultimately create \texttt{CTestTestFile.cmake} files in the CMake build directory at configure time. You can see the exact commands used for each test after configure in the \texttt{build/reg_tests/CTestTestFile.cmake} file.

Note if your test doesn’t conform to an existing archetype, a new function in \texttt{CTestList.cmake} may need to be created. Also, if you are using a mesh file that doesn’t exist in the mesh repo, you will need to add it, and update the submodule in the Nalu main repo to use the latest commit of the mesh submodule repo.

#### 2.1.3 Adding Testing Machines to CDash

To add a testing machine that will post results to CDash first means that you should have all software dependencies satisfied for Nalu. Next the script located at \texttt{CTestNightlyScript.cmake} can be run for example as:

\begin{verbatim}
ctest \G
-DNIGHTLY_DIR=${NALU_TESTING_DIR} \G
-DYAML_DIR=${YAML_INSTALL_DIR} \G
-DTRILINOS_DIR=${TRILINOS_INSTALL_DIR} \G
-DHOST_NAME=machine.domain.com \G
\end{verbatim}

(continues on next page)
In this case \${NALU_TESTING_DIR} is one directory above where the Nalu repo has been checked out. This runs CTest in scripting mode with verbosity on and it will update the Nalu repo with the latest revisions, configure, build, test, and finally submit results to the CDash site. Since CTest does the building, it needs to know the locations of Yaml and Trilinos. For examples of nightly testing, refer to the testing scripts currently being run here.

### 2.2 Source Code Documentation

The source documentation is extracted from the C++ files using Doxygen.

#### 2.2.1 Simulation – Nalu Top-level Interface

**class Simulation**

**Realms**

Realm is a Nalu abstraction of a set of equations that are solved on a computational domain, represented by an Exodus-II mesh. A simulation can contain multiple Realms and that can interact via \sierra::nalu::Transfer instance. \Inputoutputrealm is a special type of Realm that exists solely to provide data (input) or extract a subset of data from another Realm.

**class Realm**

Representation of a computational domain and physics equations solved on this domain.

Subclassed by \sierra::nalu::Inputoutputrealm

**Public Functions**

void **check_job**(bool get_node_count)

check job for fitting in memory

**Public Members**

stk::mesh::PartVector \texttt{bcPartVec_}

Vector holding side sets that have been registered with the boundary conditions in the input file.

The member is intended to for use in Realm::enforce_bc_onExposed_faces to check for “exposed surfaces” that might have not been assigned BCs in the input file.

**class Inputoutputrealm : public** sierra::nalu::Realm

**class Realms**

**Time Integration**

**class Timeintegrator**
Linear Solver Interface

**class LinearSystem**
Subclassed by `sierra::nalu::TpetraLinearSystem`

### Public Functions

#### virtual void `buildDirichletNodeGraph` (const `stk::mesh::PartVector`&)
Process nodes that belong to Dirichlet-type BC.

#### virtual void `buildDirichletNodeGraph` (const `std::vector<std::vector::Entity>`&)
Process nodes as belonging to a Dirichlet-type row.

See the documentation/implementation of `sierra::nalu::FixPressureAtNodeAlgorithm` for an example of this use case.

#### virtual void `resetRows` (`std::vector<std::vector::Entity>` `nodeList`, const unsigned `beginPos`, const unsigned `endPos`) = 0
Reset LHS and RHS for the given set of nodes to 0.

**Parameters**

- `nodeList`: A list of STK node entities whose rows are zeroed out
- `beginPos`: Starting index (usually 0)
- `endPos`: Terminating index (1 for scalar quantities; nDim for vectors)

---

**class LinearSolver**
An abstract representation of a linear solver in Nalu.

Defines the basic API supported by the linear solvers for use within Nalu. See concrete implementations such as `sierra::nalu::TpetraLinearSolver` for more details.

Subclassed by `sierra::nalu::TpetraLinearSolver`

### Public Functions

#### virtual `PetraType` `getType` () = 0
Type of solver instance as defined in `sierra::nalu::PetraType`.

#### virtual void `destroyLinearSolver` () = 0
Utility method to cleanup solvers during simulation.

bool & `recomputePreconditioner` ()
Flag indicating whether the preconditioner is recomputed on each invocation.

bool & `reusePreconditioner` ()
Flag indicating whether the preconditioner is reused on each invocation.

void `zero_timer_precond` ()
Reset the preconditioner timer to 0.0 for future accumulation.

double `get_timer_precond` ()
Get the preconditioner timer for the last invocation.
bool &activeMueLu()
Flag indicating whether the user has activated MueLU.

LinearSolverConfig *getConfig()
Get the solver configuration specified in the input file.

Public Members

std::string name_
User-friendly identifier for this particular solver instance.

class TpetraLinearSystem : public sierra::nalu::LinearSystem

Public Functions

virtual void resetRows(const std::vector<stk::mesh::Entity> &nodeList, const unsigned beginPos, const unsigned endPos)
Reset LHS and RHS for the given set of nodes to 0.

Parameters

• nodeList: A list of STK node entities whose rows are zeroed out
• beginPos: Starting index (usually 0)
• endPos: Terminating index (1 for scalar quantities; nDim for vectors)

Transfers

class Transfer

class Transfers

2.2.2 Equation Systems

class EquationSystem
Base class representation of a PDE.

EquationSystem defines the API supported by all concrete implementations of PDEs for performing the following actions:

• Register computational fields
• Register computational algorithms for interior domain and boundary conditions
• Manage solve and update of the PDE for a given timestep

Subclassed by sierra::nalu::ContinuityEquationSystem, sierra::nalu::GasDynamicsEquationSystem, sierra::nalu::KEpsilonEquationSystem, sierra::nalu::LowMachEquationSystem, sierra::nalu::MeshDisplacementEquationSystem, sierra::nalu::LowMachFemEquationSystem, sierra::nalu::MixtureFractionEquationSystem, sierra::nalu::MixtureFractionFemEquationSystem, sierra::nalu::ProjectedNodalGradientEquationSystem, sierra::nalu::RadiativeTransportEquationSystem, sierra::nalu::ContinuityFemEquationSystem, sierra::nalu::GasDynamicsEquationSystem, sierra::nalu::KEpsilonEquationSystem, sierra::nalu::LowMachEquationSystem, sierra::nalu::MeshDisplacementEquationSystem, sierra::nalu::LowMachFemEquationSystem, sierra::nalu::MixtureFractionEquationSystem, sierra::nalu::MixtureFractionFemEquationSystem, sierra::nalu::ProjectedNodalGradientEquationSystem, sierra::nalu::RadiativeTransportEquationSystem,
sierra::nalu::ShearStressTransportEquationSystem,  sierra::nalu::SpecificDissipationRateEquationSystem,  
sierra::nalu::TurbDissipationEquationSystem,  
sierra::nalu::TurbKineticEnergyEquationSystem,  
sierra::nalu::VolumeOfFluidEquationSystem

Public Functions

virtual void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

```cpp
void solve_and_update()
{
  // Iterate over all equation systems
  for (auto eqsys: equationSystems_) {
    eqsys->pre_iter_work();
    eqsys->solve_and_update(); //<<<< Assemble and solve system
    eqsys->post_iter_work();
  }
}
```

See EquationSystems::solve_and_update

virtual void pre_iter_work()
Perform setup tasks before entering the solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

```cpp
void pre_iter_work()
{
  // Iterate over all equation systems
  for (auto eqsys: equationSystems_) {
    eqsys->pre_iter_work(); //<<<< Pre-iteration setup
    eqsys->solve_and_update();
    eqsys->post_iter_work();
  }
}
```

See EquationSystems::solve_and_update

virtual void post_iter_work()
Perform setup tasks after he solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

```cpp
void post_iter_work()
{
  // Iterate over all equation systems
  for (auto eqsys: equationSystems_) {
    eqsys->pre_iter_work();
    eqsys->solve_and_update();
    eqsys->post_iter_work(); //<<<< Post-iteration actions
  }
}
```

See EquationSystems::solve_and_update
virtual void post_iter_work_dep()
   Deprecated post iteration work logic.

Public Members

std::vector<AlgorithmDriver *> preIterAlgDriver_
   List of tasks to be performed before each EquationSystem::solve_and_update.

std::vector<AlgorithmDriver *> postIterAlgDriver_
   List of tasks to be performed after each EquationSystem::solve_and_update.

class LowMachEquationSystem public sierra::nalu::EquationSystem
Low-Mach formulation of the Navier-Stokes Equations.
This class is a thin-wrapper around sierra::nalu::ContinuityEquationSystem and sierra::nalu::MomentumEquationSystem that orchestrates the interactions between the velocity and the pressure Possion solves in the LowMachEquationSystem::solve_and_update method.

Public Functions

virtual void pre_iter_work()
   Perform setup tasks before entering the solve and update step.
   This method is invoked in EquationSystems::solve_and_update method as shown below

   pre_iter_work();
   // Iterate over all equation systems
   for (auto eqsys: equationSystems_) {
      eqsys->pre_iter_work(); //<<<< Pre-iteration setup
      eqsys->solve_and_update();
      eqsys->post_iter_work();
   }
   post_iter_work();

   See EquationSystems::solve_and_update

virtual void solve_and_update()
   Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.
   This method is invoked in EquationSystems::solve_and_update method as shown below

   pre_iter_work();
   // Iterate over all equation systems
   for (auto eqsys: equationSystems_) {
      eqsys->pre_iter_work();
      eqsys->solve_and_update(); //<<<< Assemble and solve system
      eqsys->post_iter_work();
   }
   post_iter_work();

   See EquationSystems::solve_and_update

class EnthalpyEquationSystem public sierra::nalu::EquationSystem
Public Functions

void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

```cpp
pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
    eqsys->pre_iter_work();
    eqsys->solve_and_update(); //<<<< Assemble and solve system
    eqsys->post_iter_work();
}
post_iter_work();
```

See EquationSystems::solve_and_update

void post_iter_work_dep()
Deprecated post iteration work logic.

class TurbKineticEnergyEquationSystem
: public sierra::nalu::EquationSystem

Public Functions

void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

```cpp
pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
    eqsys->pre_iter_work();
    eqsys->solve_and_update(); //<<<< Assemble and solve system
    eqsys->post_iter_work();
}
post_iter_work();
```

See EquationSystems::solve_and_update

class ShearStressTransportEquationSystem
: public sierra::nalu::EquationSystem

Public Functions

virtual void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

```cpp
pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
    eqsys->pre_iter_work();
}
```
eqsys->solve_and_update(); //<<<< Assemble and solve system
eqsys->post_iter_work();
}
post_iter_work();

See EquationSystems::solve_and_update

class HeatCondEquationSystem: public sierra::nalu::EquationSystem

Public Functions

void solve_and_update()
   Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

   This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
   // Iterate over all equation systems
   for (auto eqsys: equationSystems_) {
      eqsys->pre_iter_work();
      eqsys->solve_and_update();       //<<<< Assemble and solve system
      eqsys->post_iter_work();
    }
post_iter_work();

See EquationSystems::solve_and_update

class MassFractionEquationSystem: public sierra::nalu::EquationSystem

Public Functions

void solve_and_update()
   Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

   This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
   // Iterate over all equation systems
   for (auto eqsys: equationSystems_) {
      eqsys->pre_iter_work();
      eqsys->solve_and_update();       //<<<< Assemble and solve system
      eqsys->post_iter_work();
    }
post_iter_work();

See EquationSystems::solve_and_update

class MixtureFractionEquationSystem: public sierra::nalu::EquationSystem

2.2. Source Code Documentation
Public Functions

```cpp
void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.
This method is invoked in EquationSystems::solve_and_update method as shown below
```
```cpp
pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
    eqsys->pre_iter_work();
    eqsys->solve_and_update(); //<<<< Assemble and solve system
    eqsys->post_iter_work();
}
post_iter_work();
```

See EquationSystems::solve_and_update

```cpp
class MomentumEquationSystem : public sierra::nalu::EquationSystem
Representation of the Momentum conservation equations in 2-D and 3-D.
```
```cpp
class ContinuityEquationSystem : public sierra::nalu::EquationSystem
```
```cpp
class SpecificDissipationRateEquationSystem : public sierra::nalu::EquationSystem
```
```cpp
class ProjectedNodalGradientEquationSystem : public sierra::nalu::EquationSystem
```

Public Functions

```cpp
void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.
This method is invoked in EquationSystems::solve_and_update method as shown below
```
```cpp
pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
    eqsys->pre_iter_work();
    eqsys->solve_and_update(); //<<<< Assemble and solve system
    eqsys->post_iter_work();
}
post_iter_work();
```

See EquationSystems::solve_and_update

```cpp
class EquationSystems
A collection of Equations to be solved on a Realm.
EquationSystems holds a vector of EquationSystem instances representing the equations that are being solved in a given Realm and is responsible for the management of the solve and update of the various field quantities in a given timestep.
See EquationSystems::solve_and_update
```
Public Functions

**bool solve_and_update()**  
Solve and update the state of all variables for a given timestep.

This method is responsible for executing setup actions before calling solve, performing the actual solve, updating the solution, and performing post-solve actions after the solution has been updated. To provide sufficient granularity and control of this pre- and post- solve actions, the solve method uses the following series of steps:

```c++
// Perform tasks for this timestep before any Equation system is called
pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
    eqsys->pre_iter_work();
    eqsys->solve_and_update();
    eqsys->post_iter_work();
}
// Perform tasks after all equation systems have updated
post_iter_work();
```

Tasks that require to be performed before any equation system is solved for needs to be registered to preIterAlgDriver_ on EquationSystems, similiar for post-solve tasks. And actions to be performed immediately before individual equation system solves need to be registered in EquationSystem::preIterAlgDriver_.

See `pre_iter_work()`, `post_iter_work()`, `EquationSystem::pre_iter_work()`, `EquationSystem::post_iter_work()`

**void pre_iter_work()**  
Perform necessary setup tasks that affect all `EquationSystem` instances at a given timestep.

See `EquationSystems::solve_and_update()`

**void post_iter_work()**  
Perform necessary actions once all `EquationSystem` instances have been updated for the prescribed number of outer iterations at a given timestep.

See `EquationSystems::solve_and_update()`

Public Members

- `std::vector<AlgorithmDriver *> preIterAlgDriver_`  
  A list of tasks to be performed before all `EquationSystem::solve_and_update`.

- `std::vector<AlgorithmDriver *> postIterAlgDriver_`  
  A list of tasks to be performed after all `EquationSystem::solve_and_update`.

### 2.2.3 Linear Solvers and Systems Interface

**Linear Systems**

- **class LinearSystem**  
  Subclassed by `sierra::nalu::TpetraLinearSystem`
Public Functions

virtual void buildDirichletNodeGraph (const stk::mesh::PartVector&)  
Process nodes that belong to Dirichlet-type BC.

virtual void buildDirichletNodeGraph (const std::vector<stk::mesh::Entity>&)  
Process nodes as belonging to a Dirichlet-type row.
See the documentation/implementation of sierra::nalu::FixPressureAtNodeAlgorithm for an example of this use case.

virtual void resetRows (std::vector<stk::mesh::Entity> nodeList, const unsigned beginPos, const unsigned endPos) = 0  
Reset LHS and RHS for the given set of nodes to 0.

Parameters
- nodeList: A list of STK node entities whose rows are zeroed out
- beginPos: Starting index (usually 0)
- endPos: Terminating index (1 for scalar quantities; nDim for vectors)

class TpetraLinearSystem : public sierra::nalu::LinearSystem

Public Functions

virtual void resetRows (const std::vector<stk::mesh::Entity> nodeList, const unsigned beginPos, const unsigned endPos)  
Reset LHS and RHS for the given set of nodes to 0.

Parameters
- nodeList: A list of STK node entities whose rows are zeroed out
- beginPos: Starting index (usually 0)
- endPos: Terminating index (1 for scalar quantities; nDim for vectors)

Warning: doxygenclass: Cannot find class “sierra::nalu::HypreLinearSystem” in doxygen xml output for project “nalu” from directory: ./doxygen/xml

Linear Solvers Interface

class LinearSolver
An abstract representation of a linear solver in Nalu.

Defines the basic API supported by the linear solvers for use within Nalu. See concrete implementations such as sierra::nalu::TpetraLinearSolver for more details.

Subclassed by sierra::nalu::TpetraLinearSolver
Public Functions

virtual PetraType getType() = 0
    Type of solver instance as defined in sierra::nalu::PetraType.

destroyLinearSolver() = 0
    Utility method to cleanup solvers during simulation.

bool &recomputePreconditioner()
    Flag indicating whether the preconditioner is recomputed on each invocation.

bool &reusePreconditioner()
    Flag indicating whether the preconditioner is reused on each invocation.

void zero_timer_precond()
    Reset the preconditioner timer to 0.0 for future accumulation.

double get_timer_precond()
    Get the preconditioner timer for the last invocation.

bool &activeMueLu()
    Flag indicating whether the user has activated MueLU.

LinearSolverConfig *getConfig()
    Get the solver configuration specified in the input file.

Public Members

std::string name_
    User-friendly identifier for this particular solver instance.

class TpetraLinearSolver: public sierra::nalu::LinearSolver

Public Functions

TpetraLinearSolver(std::string solverName, TpetraLinearSolverConfig *config, const Teuchos::RCP<Teuchos::ParameterList> params, const Teuchos::RCP<Teuchos::ParameterList> paramsPrecond, *linearSolvers)

Parameters

• [in] solverName: The name of the solver
• [in] config: Solver configuration

virtual void destroyLinearSolver()
    Utility method to cleanup solvers during simulation.

void setMueLu()
    Initialize the MueLU preconditioner before solve.

int residual_norm(int whichNorm, Teuchos::RCP<LinSys::Vector> sln, double &norm)
    Compute the norm of the non-linear solution vector.

Parameters
int solve (Teuchos::RCP<LinSys::Vector> sln, int &iterationCount, double &scaledResidual, bool isFinalOuterIter)
Solve the linear system $Ax = b$.

Parameters

- [out] sln: The solution vector
- [out] iterationCount: The number of linear solver iterations to convergence
- [out] scaledResidual: The final residual norm
- [in] isFinalOuterIter: Is this the final outer iteration

virtual PetraType getType ()
Type of solver instance as defined in sierra::nalu::PetraType.

Warning: doxygenclass: Cannot find class “sierra::nalu::HypreDirectSolver” in doxygen xml output for project “nalu” from directory: ./doxygen/xml

class LinearSolvers
Collection of solvers and their associated configuration.

This class performs the following actions within a Nalu simulation:

- Parse the linear_solvers section and create a mapping of user-defined configurations.
- Create solvers for specific equation system and update the mapping

Public Functions

void load (const YAML::Node &node)
Parse the linear_solvers section from Nalu input file.

LinearSolver *create_solver (std::string solverBlockName, EquationType theEQ)
Create a solver for the EquationSystem.

Parameters

- [in] solverBlockName: The name specified in the input file, e.g., solve_scalar
- [in] theEQ: The type of equation

Public Members

SolverMap solvers_
Mapping of solver instances to the EquationType.

SolverTpetraConfigMap solverTpetraConfig_
A lookup table of solver configurations against the names provided in the input file when the type is tpetra
Simulation & sim
Reference to the sierra::nalu::Simulation instance.

Solver Configuration

class LinearSolverConfig
Subclassed by sierra::nalu::TpetraLinearSolverConfig

class TpetraLinearSolverConfig : public sierra::nalu::LinearSolverConfig

Warning: doxygenclass: Cannot find class “sierra::nalu::HypreLinearSolverConfig” in doxygen xml output for project “nalu” from directory: ./doxygen/xml

2.2.4 CVFEM and FEM Interface

class MasterElement
Subclassed by sierra::nalu::Edge2DSCS, sierra::nalu::Hex8FEM, sierra::nalu::HexahedralP2Element, sierra::nalu::HexSCS, sierra::nalu::HexSCV, sierra::nalu::PyrSCS, sierra::nalu::PyrSCV, sierra::nalu::Quad3DSCS, sierra::nalu::Quad42DSCS, sierra::nalu::Quad42DSCV, sierra::nalu::QuadrilateralP2Element, sierra::nalu::Tet10FEM, sierra::nalu::TetSCS, sierra::nalu::TetSCV, sierra::nalu::Tri2DSCV, sierra::nalu::Tri2DSCS, sierra::nalu::Tri32DSCS, sierra::nalu::Tri3DSCS, sierra::nalu::Tri6FEM, sierra::nalu::WedSCS, sierra::nalu::WedSCV

3-D Topologies

class HexSCV : public sierra::nalu::MasterElement

class HexSCS : public sierra::nalu::MasterElement

class TetSCV : public sierra::nalu::MasterElement

class TetSCS : public sierra::nalu::MasterElement

class PyrSCV : public sierra::nalu::MasterElement

class PyrSCS : public sierra::nalu::MasterElement

class WedSCV : public sierra::nalu::MasterElement

class WedSCS : public sierra::nalu::MasterElement

class Hex27SCV : public sierra::nalu::HexahedralP2Element

class Hex27SCS : public sierra::nalu::HexahedralP2Element

class Hex8FEM : public sierra::nalu::MasterElement

class Quad3DSCS : public sierra::nalu::MasterElement

class Quad93DSCS : public sierra::nalu::HexahedralP2Element

class Tri3DSCS : public sierra::nalu::MasterElement
2-D Topologies

class Quad42DSCV : public sierra::nalu::MasterElement

class Quad42DSCS : public sierra::nalu::MasterElement

class Tri32DSCV : public sierra::nalu::MasterElement

class Tri32DSCS : public sierra::nalu::MasterElement

Higher-order Element Topologies

Warning:  doxygenclass: Cannot find class "sierra::nalu::HigherOrderHexSCV" in doxygen xml output for project "nalu" from directory: ./doxygen/xml

Warning:  doxygenclass: Cannot find class "sierra::nalu::HigherOrderHexSCS" in doxygen xml output for project "nalu" from directory: ./doxygen/xml

Warning:  doxygenclass: Cannot find class "sierra::nalu::HigherOrderQuad2DSCV" in doxygen xml output for project "nalu" from directory: ./doxygen/xml

Warning:  doxygenclass: Cannot find class "sierra::nalu::HigherOrderQuad2DSCS" in doxygen xml output for project "nalu" from directory: ./doxygen/xml

2.2.5 Actuator Sources

The sierra::nalu::Actuator simply computes momentum sources for a line of defined actuator points.

class Actuator
    Subclassed by sierra::nalu::ActuatorLinePointDrag

2.2.6 Auxiliary Functions

class AuxFunction
    Subclassed by sierra::nalu::BoundaryLayerPerturbationAuxFunction, sierra::nalu::BoussinesqNonIsoTemperatureAuxFunction, sierra::nalu::BoussinesqNonIsoVelocityAuxFunction, sierra::nalu::ChannelFlowPerturbedPlugVelocityAuxFunction, sierra::nalu::ConcentricAuxFunction, sierra::nalu::ConstantAuxFunction, sierra::nalu::ConvertingTaylorVortexPressureAuxFunction, sierra::nalu::ConvertingTaylorVortexPressureGradAuxFunction, sierra::nalu::ConvertingTaylorVortexVelocityAuxFunction, sierra::nalu::FixedHeightMixFracAuxFunction, sierra::nalu::FlowPastCylinderTempAuxFunction, sierra::nalu::KovasznayPressureAuxFunction, sierra::nalu::KovasznayPressureGradientAuxFunction, sierra::nalu::LinearAuxFunction, sierra::nalu::LinearRampMeshDisplacementAuxFunction, sierra::nalu::MeshMotionAuxFunction, sierra::nalu::OneTwoTenVelocityAuxFunction, sierra::nalu::PowerlawVelocityAuxFunction, sierra::nalu::RayleighTaylorMixFracAuxFunction, sierra::nalu::ScalarGaussianAuxFunction, sierra::nalu::SinMeshDisplacementAuxFunction, sierra::nalu::SinProfileChannelFlowVelocityAuxFunction, sierra::nalu::SinProfilePipeFlowVelocityAuxFunction,
sierra::nalu::SteadyTaylorVortexGradPressureAuxFunction, sierra::nalu::SteadyTaylorVortexPressureAuxFunction, sierra::nalu::SteadyTaylorVortexVelocityAuxFunction, sierra::nalu::SteadyThermal3dContactAuxFunction, sierra::nalu::SteadyThermal3dContactDiDxAuxFunction, sierra::nalu::SteadyThermalContactAuxFunction, sierra::nalu::TaylorGreenPressureAuxFunction, sierra::nalu::TaylorGreenVelocityAuxFunction, sierra::nalu::TornadoAuxFunction, sierra::nalu::VariableDensityMixFracAuxFunction, sierra::nalu::VariableDensityNonIsoTemperatureAuxFunction, sierra::nalu::VariableDensityPressureAuxFunction, sierra::nalu::VariableDensityVelocityAuxFunction, sierra::nalu::WorkshopMMSMixFracAuxFunction

ABL Utilities

class BoundaryLayerPerturbationAuxFunction : public sierra::nalu::AuxFunction
Add sinusoidal perturbations to the velocity field.

This function is used as an initial condition, primarily in Atmospheric Boundary Layer (ABL) flows, to trigger transition to turbulent flow during ABL precursor simulations.

Steady Taylor Vortex

class SteadyTaylorVortexVelocityAuxFunction : public sierra::nalu::AuxFunction
class SteadyTaylorVortexPressureAuxFunction : public sierra::nalu::AuxFunction
class SteadyTaylorVortexGradPressureAuxFunction : public sierra::nalu::AuxFunction

Warning: doxygenclass: Cannot find class “sierra::nalu::SteadyTaylorVortexMomentumSrcElemSuppAlg” in doxygen xml output for project “nalu” from directory: /doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::SteadyTaylorVortexMomentumSrcNodeSuppAlg” in doxygen xml output for project “nalu” from directory: /doxygen/xml

ConveXing Taylor Vortex

class ConveXingTaylorVortexVelocityAuxFunction : public sierra::nalu::AuxFunction
class ConveXingTaylorVortexPressureAuxFunction : public sierra::nalu::AuxFunction
class ConveXingTaylorVortexGradAuxFunction : public sierra::nalu::AuxFunction

Kovasznay 2-D Flow

class KovasznayVelocityAuxFunction : public sierra::nalu::AuxFunction
class KovasznayPressureAuxFunction : public sierra::nalu::AuxFunction
class KovasznayPressureGradientAuxFunction : public sierra::nalu::AuxFunction
Steady Thermal MMS (2-D and 3-D)

class SteadyThermal3dContactAuxFunction : public sierra::nalu::AuxFunction

class SteadyThermal3dContactDtDxAuxFunction : public sierra::nalu::AuxFunction

template<typename AlgTraits>
class SteadyThermal3dContactSrcElemKernel : public sierra::nalu::Kernel

Public Functions

virtual void execute (SharedMemView<DoubleType **> &lhs, SharedMemView<DoubleType *> &rhs, ScratchViews<DoubleType> &scratchViews)

Execute the kernel within a Kokkos loop and populate the LHS and RHS for the linear solve.

Warning: doxygen class: Cannot find class “sierra::nalu::SteadyThermal3dContactSrcElemSuppAlgDep” in doxygen xml output for project “nalu” from directory: ./doxygen/xml

class SteadyThermalContact3DSrcNodeSuppAlg : public sierra::nalu::SupplementalAlgorithm

class SteadyThermalContactAuxFunction : public sierra::nalu::AuxFunction

class SteadyThermalContactSrcElemSuppAlg : public sierra::nalu::SupplementalAlgorithm

class SteadyThermalContactSrcNodeSuppAlg : public sierra::nalu::SupplementalAlgorithm

Mesh Motion/Displacement Utilities

class LinearRampMeshDisplacementAuxFunction : public sierra::nalu::AuxFunction

class SinMeshDisplacementAuxFunction : public sierra::nalu::AuxFunction

class WindEnergyAuxFunction : public sierra::nalu::AuxFunction

2.2.7 Post-Processing Utilities

class TurbulenceAveragingPostProcessing

Post-processing to collect various types of statistics on flow fields.

This class implements Reynolds and Favre averaging as well as other useful quantities relevant to analyzing turbulent flows.

Currently supported:

- Reynolds and Favre averaging of flow variables
- TKE and stress computation
- Vorticity, Q-criterion, lambda-ci calculation

Public Types

enum AveragingType

Type of time filter averaging applied.

Values:
**NALU\_CLASSIC** = 0
Classic Nalu implementation (saw-tooth reset)

**MOVING\_EXPONENTIAL**
Moving exponential window averaging.

class DataProbePostProcessing
class SolutionNormPostProcessing
class SurfaceForceAndMomentAlgorithm : public sierra::nalu::Algorithm
class SurfaceForceAndMomentWallFunctionAlgorithm : public sierra::nalu::Algorithm

### 2.3 Writing Developer Documentation

Developer documentation should be written using Doxygen annotations directly in the source code. This allows the documentation to live with the code essentially as comments that Doxygen is able to extract automatically into a more human readable form. Doxygen requires special syntax markers to indicate comments that should be processed as inline documentation vs. generic comments in the source code. The Doxygen manual provides detailed information on the various markers available to tailor the formatting of auto-generated documentation. It is recommended that users document the classes and methods in the header file. A sample header file with specially formatted comments is shown below. You can [download](#) a copy of the file.

Listing 2.1: Sample C++ header file showing inline documentation using specially formatted comments.

```cpp
/** @file example.h
 * @brief Brief description of a documented file.
 * @longer Longer description of a documented file.
 */

/** Here is a brief description of the example class.
 * This is a more in-depth description of the class.
 * This class is meant as an example.
 * It is not useful by itself, rather its usefulness is only a
 * function of how much it helps the reader. It is in a sense
 * defined by the person who reads it and otherwise does
 * not exist in any real form.
 * @note This is a note.
 * */
#ifndef EXAMPLECLASS_H
#define EXAMPLECLASS_H

class ExampleClass
{
    public:
        /// Create an ExampleClass.
        ExampleClass();

#endif
```

(continues on next page)
/** Create an ExampleClass with lot's of intial values.
 *  
 * @param a This is a description of parameter a.
 * @param b This is a description of parameter b.
 *  
 * The distance between \( \mathbf{(x_1,y_1)} \) and \( \mathbf{(x_2,y_2)} \) is
 * \( \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \).
 */
ExampleClass(int a, float b);

/** ExampleClass destructor description. 
 */
~ExampleClass();

/// This method does something.
void DoSomething();

/**
 * This is a method that does so
 * much that I must write an epic
 * novel just to describe how much
 * it truly does.
 */
void DoNothing();

/** Brief description of a useful method.
 *  
 * @param level An integer setting how useful to be.
 * @return Description of the output.
 *  
 * This method does unbelievably useful things.
 * And returns exceptionally useful results.
 * Use it everyday with good health.
 *  
 *  
 *  
 */
void VeryUsefulMethod(bool level);

/** Brief description of a useful method.
 *  
 * @param level An integer setting how useful to be.
 * @return Description of the output.
 *  
 * - Item 1
 *  
 * More text for this item.
 *  
 * - Item 2
 *  
 * + nested list item.
 *  
 * + another nested item.
 *  
 * - Item 3
```cpp
void AnotherMethod(bool level);

protected:
    /** The protected methods can be documented and extracted too.
    *
    */
    void SomeProtectedMethod();

private:
    const char* fQuestion;  ///< The question
    int fAnswer;            ///< The answer
};  // End of class ExampleClass

#endif // EXAMPLE_H
```

Once processed by Doxygen and embedded in Sphinx, the resulting documentation of the class looks as shown below:

```markdown
## ExampleClass

Here is a brief description of the example class.

This is a more in-depth description of the class. This class is meant as an example. It is not useful by itself, rather its usefulness is only a function of how much it helps the reader. It is in a sense defined by the person who reads it and otherwise does not exist in any real form.

**Note** This is a note.

### Public Functions

**ExampleClass()**

Create an `ExampleClass`.

**ExampleClass(int a, float b)**

Create an `ExampleClass` with lot's of intial values.

The distance between \((x_1, y_1)\) and \((x_2, y_2)\) is \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\).

**Parameters**

- \(a\): This is a description of parameter \(a\).
- \(b\): This is a description of parameter \(b\).

**~ExampleClass()**

`ExampleClass` destructor description.

void `DoSomething()`

This method does something.

void `DoNothing()`

This is a method that does so much that I must write an epic novel just to describe how much it truly does.

2.3. Writing Developer Documentation

59
void *VeryUsefulMethod (bool level)
Brief description of a useful method.
This method does unbelievably useful things. And returns exceptionally useful results. Use it everyday with good health.

\[ |I_2| = \left| \int_0^T \psi(t) \left\{ u(a, t) - \int_0^a \frac{d\theta}{k(\theta, t)} \int_0^\theta c(\xi) u(t, \xi) d\xi \right\} dt \right| \]

Return Description of the output.
Parameters
• level: An integer setting how useful to be.

void *AnotherMethod (bool level)
Brief description of a useful method.

• Item 1
  More text for this item.
• Item 2
  – nested list item.
  – another nested item.
• Item 3

Return Description of the output.
Parameters
• level: An integer setting how useful to be.

*Markdown Example*
Here is a link.

**Protected Functions**

void SomeProtectedMethod ()
The protected methods can be documented and extracted too.

**Private Members**

const char *fQuestion
The question.
int fAnswer
The answer.
2.4 Writing User Documentation

This documentation is written in Sphinx and is generated automatically on the http://nalu.readthedocs.io website every time the Nalu Github repo is updated. This documentation can also be built locally on your machine by using the instructions here. Sphinx uses restructured text (RST) to generate the documentation in many other formats, such as this html version. Refer to the primer on writing restructured text here.

2.5 Building the Documentation

This document describes how to build Nalu’s documentation. The documentation is based on the use of Doxygen, Sphinx, and Doxylink. Therefore we will need to install these tools as well as some extensions of Sphinx that are utilized.

2.5.1 Install the Tools

Install CMake, Doxygen, Sphinx, Doxylink, and the extensions used. Doxygen uses the dot application installed with GraphViz. Sphinx uses a combination of extensions installed with pip install as well as some that come with Nalu located in the _extensions directory. Using Homebrew on Mac OS X, this would look something like:

```
brew install cmake
brew install python
brew install doxygen
brew install graphviz
pip2 install sphinx
pip2 install sphinxcontrib-bibtex
pip2 install breathe
pip2 install sphinx_rtd_theme
```

On Linux, CMake, Python, Doxygen, and GraphViz could be installed using your package manager, e.g. `sudo apt-get install cmake`.

2.5.2 Run CMake Configure

In the Nalu repository checkout, create your own or use the build directory that already exists in the repo. Change to your designated build directory and run CMake with `-DENABLE_DOCUMENTATION` on. For example:

```
cmake -DTTrilinos_DIR:PATH=$(spack location -i nalu-trilinos) \n   -DYAML_DIR:PATH=$(spack location -i yaml-cpp) \n   -DCMAKE_BUILD_TYPE=RELEASE \n   -DENABLE_DOCUMENTATION:BOOL=ON \n   ...
```

If all of the main tools are found successfully, CMake should configure with the ability to build the documentation. If Sphinx or Doxygen aren’t found, the configure will skip the documentation.

2.5.3 Make the Docs

In your designated build directory, issue the command `make docs` which should first build the Doxygen documentation and then the Sphinx documentation. If this completes successfully, the entry point to the documentation should be in `build/docs/html/index.html`. 
2.6 Developer Workflow

This document describes a suggested developer workflow for Nalu.

2.7 Nalu Style Guide

1. No tabs. Remove them from your editor. Better yet, use eclipse and follow the xml style. Use the format here.
2. Use underscores for private data, e.g., const double thePrivateData_.
3. Use camel case for data members and classes unless it is silly (you get the idea).
4. Camel case on Class names always; non camel case for methods, e.g.,
   ```cpp
   const double Realm::get_me() {
       return hereIAm_; // hmmm... silly? your call
   }
   ```
5. Use const when possible, however, do not try to be a member of the ‘const’ police force.
6. We need logic to launch some special physics. Try to avoid run time logic by designing with polymorphic/templates.
7. When possible, add classes that manage loading, field registration, setup and execute, e.g., SolutionNormPost-Processing, etc.

2.8 Contributing to Nalu

1. There is no rush to push. We only support production tested capability. Better yet, perform code verification and unit testing.
2. Always run the full regression test suite. No exceptions.
3. Peer review when fully appropriate (ask for a pull request).
4. If adding a new feature, include a regression test for this feature. Refer to the section of this documentation on adding a test here.
The SIERRA Low Mach Module: Nalu (henceforth referred to as Nalu), developed at Sandia National Labs, represents a generalized unstructured, massively parallel, variable density turbulent flow capability designed for energy applications. This code base began as an effort to prototype Sierra Toolkit, [EWS+10], usage along with direct parallel matrix assembly to the Trilinos, [HBH+03], Epetra and Tpetra data structure. However, the simulation tool has evolved as a tool to support a variety of research projects germane to the energy sector including wind aerodynamic prediction and traditional gas-phase combustion applications.

3.1 Low Mach Number Derivation

The low Mach number equations are a subset of the fully compressible equations of motion (momentum, continuity and energy), admitting large variations in gas density while remaining acoustically incompressible. The low Mach number equations are preferred over the full compressible equations for low speed flow problems as the acoustics are of little consequence to the overall simulation accuracy. The technique avoids the need to resolve fast-moving acoustic signals. Derivations of the low Mach number equations can be found found in Rehm and Baum, [RB78], or Paolucci, [Pao82].

The equations are derived from the compressible equations using a perturbation expansion in terms of the lower limit of the Mach number squared; hence the name. The asymptotic expansion leads to a splitting of pressure into a spatially constant thermodynamic pressure and a locally varying dynamic pressure. The dynamic pressure is decoupled from the thermodynamic state and cannot propagate acoustic waves. The thermodynamic pressure is used in the equation of state and to determine thermophysical properties. The thermodynamic pressure can vary in time and can be calculated using a global energy balance.

3.1.1 Asymptotic Expansion

The asymptotic expansion for the low Mach number equations begins with the full compressible equations in Cartesian coordinates. The equations are the minimum set required to propagate acoustic waves. The equations are written in divergence form using Einstein notation (summation over repeated indices):

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_j)}{\partial x_j} &= 0, \\
\frac{\partial (\rho u_i)}{\partial t} + \frac{\partial (\rho u_i u_j)}{\partial x_j} + \frac{\partial P}{\partial x_i} &= \frac{\partial \tau_{ij}}{\partial x_j} + \rho g_i, \\
\frac{\partial \rho E}{\partial t} + \frac{\partial (\rho u_i H)}{\partial x_j} &= -\frac{\partial q_j}{\partial x_j} + \frac{\partial (u_i \tau_{ij})}{\partial x_j} + \rho u_i g_i.
\end{align*}
\]

The primitive variables are the velocity components, \(u_i\), the pressure, \(P\), and the temperature \(T\). The viscous shear stress tensor is \(\tau_{ij}\), the heat conduction is \(q_i\), the total enthalpy is \(H\), the total internal energy is \(E\), the density is \(\rho\),
and the gravity vector is $g_i$. The total internal energy and total enthalpy contain the kinetic energy contributions. The equations are closed using the following models and definitions:

$$
P = \rho \frac{R}{W} T, \\
E = H - P/\rho, \\
H = h + \frac{1}{2} u_k u_k, \\
\tau_{ij} = \mu \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \mu \frac{\partial u_k}{\partial x_k} \delta_{ij}, \\
q_i = -k \frac{\partial T}{\partial x_i}$$

The mean molecular weight of the gas is $W$, the molecular viscosity is $\mu$, and the thermal conductivity is $k$. A Newtonian fluid is assumed along with the Stokes hypothesis for the stress tensor.

The equations are scaled so that the variables are all of order one. The velocities, lengths, and times are nondimensionalized by a characteristic velocity, $U_\infty$, and a length scale, $L$. The pressure, density, and temperature are nondimensionalized by $P_\infty$, $\rho_\infty$, and $T_\infty$. The enthalpy and energy are nondimensionalized by $C_p T_\infty$. Dimensionless variables are noted by overbars. The dimensionless equations are:

$$
\frac{\partial \bar{\rho}}{\partial t} + \frac{\partial \bar{\rho} \bar{u}_j}{\partial x_j} = 0, \\
\frac{\partial \bar{p}}{\partial t} + \frac{\partial \bar{p} \bar{u}_j}{\partial x_j} + \frac{1}{\gamma \text{Ma}^2} \frac{\partial \bar{P}}{\partial x_j} = \frac{1}{\text{Re} \bar{\tau}_{ij}} + \frac{1}{\text{Fr}_i} \bar{p}, \\
\frac{\partial \bar{h}}{\partial t} + \frac{\partial \bar{u}_j \bar{h}}{\partial x_j} = \frac{1}{\text{Pr} \text{Re} \bar{\tau}_{ij}} + \frac{\gamma - 1}{\gamma} \frac{\partial \bar{P}}{\partial t} + \frac{\gamma - 1 \text{Ma}^2}{\gamma \text{Fr}_i} \bar{p} - \frac{\gamma - 1}{2 \text{Ma}^2} \left( \frac{\partial \bar{p} \bar{u}_k \bar{u}_k}{\partial t} + \frac{\partial \bar{p} \bar{u}_j \bar{u}_k \bar{u}_k}{\partial x_j} \right).
$$

The groupings of characteristic scaling terms are:

$$
\text{Re} = \frac{\rho_\infty U_\infty L}{\mu_\infty}, \quad \text{Reynolds number}, \\
\text{Pr} = \frac{C_p \mu_\infty}{\kappa_\infty}, \quad \text{Prandtl number}, \\
\text{Fr}_i = \frac{u_\infty^2}{g_i L}, \quad \text{Froude number}, \quad g_i \neq 0, \\
\text{Ma} = \sqrt{\frac{u_\infty^2}{\gamma R T_\infty / W}}, \quad \text{Mach number},
$$

where $\gamma$ is the ratio of specific heats.

For small Mach numbers, $\text{Ma} \ll 1$, the kinetic energy, viscous work, and gravity work terms can be neglected in the energy equation since those terms are scaled by the square of the Mach number. The inverse of Mach number squared remains in the momentum equations, suggesting singular behavior. In order to explore the singularity, the pressure, velocity, and temperature are expanded as asymptotic series in terms of the parameter $\epsilon$:

$$
P = \bar{P}_0 + \bar{P}_1 \epsilon + \bar{P}_2 \epsilon^2 \ldots \\
\bar{u}_i = \bar{u}_{i,0} + \bar{u}_{i,1} \epsilon + \bar{u}_{i,2} \epsilon^2 \ldots \\
\bar{T} = \bar{T}_0 + \bar{T}_1 \epsilon + \bar{T}_2 \epsilon^2 \ldots$$

The zeroeth-order terms are collected together in each of the equations. The form of the continuity equation stays the same. The gradient of the pressure in the zeroeth-order momentum equations can become singular since it is divided by the characteristic Mach number squared. In order for the zeroeth-order momentum equations to remain well-behaved, the spatial variation of the $\bar{P}_0$ term must be zero. If the magnitude of the expansion parameter is selected to be proportional to the square of the characteristic Mach number, $\epsilon = \gamma M_a^2$, then the $\bar{P}_1$ term can be included in the zeroeth-order momentum equation.

$$\frac{1}{\gamma M_a^2} \frac{\partial \bar{P}}{\partial x_i} = \frac{\partial}{\partial x_i} \left( \frac{1}{\gamma M_a^2} \bar{P}_0 + \frac{\epsilon}{\gamma M_a^2} \bar{P}_1 + \ldots \right) = \frac{\partial}{\partial x_i} \left( \bar{P}_1 + \epsilon \bar{P}_2 + \ldots \right)$$

The form of the energy equation remains the same, less the kinetic energy, viscous work and gravity work terms. The $P_0$ term remains in the energy equation as a time derivative. The low Mach number equations are the zeroeth-order equations in the expansion including the $\bar{P}_1$ term in the momentum equations. The expansion results in two different types of pressure and they are considered to be split into a thermodynamic component and a dynamic component. The thermodynamic pressure is constant in space, but can change in time. The thermodynamic pressure is used in the equation of state. The dynamic pressure only arises as a gradient term in the momentum equation and acts to enforce continuity. The unsplit dimensional pressure is

$$P = P_{th} + \gamma M_a^2 P_1,$$

where the dynamic pressure, $p = P - P_{th}$, is related to a pressure coefficient

$$\bar{P}_1 = \frac{P - P_{th}}{\rho_{\infty} u_{\infty}^2} P_{th}.$$

The resulting unscaled low Mach number equations are:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_j}{\partial x_j} = 0,$$

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_j u_i}{\partial x_j} + \frac{\partial P}{\partial x_i} = \frac{\partial \tau_{ij}}{\partial x_j} + (\rho - \rho_{\infty}) g_i,$$

$$\frac{\partial \rho h}{\partial t} + \frac{\partial \rho u_j h}{\partial x_j} = -\frac{\partial q_j}{\partial x_j} + \frac{\partial P_{th}}{\partial t},$$

where the ideal gas law becomes

$$P_{th} = \rho \frac{R}{W} T.$$

The hydrostatic pressure gradient has been subtracted from the momentum equation, assuming an ambient density of $\rho_{\infty}$. The stress tensor and heat conduction remain the same as in the original equations.

### 3.2 Supported Equation Set

This section provides an overview of the currently supported equation sets. Equations will be described in integral form with assumed Favre averaging. However, the laminar counterparts are supported in the code base and are obtain in the user file by omitting a turbulence model specification.

#### 3.2.1 Conservation of Mass

The continuity equation is always solved in the variable density form.

$$\int \frac{\partial \bar{\rho}}{\partial t} dV + \int \bar{\rho} u_i n_i dS = 0$$
Since Nalu uses equal-order interpolation (variables are collocated) stabilization is required. The stabilization choice will be developed in the pressure stabilization section.

Note that the use of a low speed compressible formulation requires that the fluid density be computed by an equation of state that uses the thermodynamic pressure. This thermodynamic pressure can either be computed based on a global energy/mass balance or allowed to be spatially varying. By modification of the continuity density time derivative to include the \( \frac{\partial \rho}{\partial p} \) sensitivity, an equation that admits acoustic pressure waves is realized.

### 3.2.2 Conservation of Momentum

The integral form of the Favre-filtered momentum equations used for turbulent transport are

\[
\int \frac{\partial \bar{\rho} \bar{u}_i}{\partial t} dV + \int \bar{\rho} \bar{u}_i \bar{u}_j n_j dS = \int \bar{\sigma}_{ij} n_j dS - \int \tau_{ij}^{gs} n_j dS + \int (\bar{\rho} - \rho_c) g_i dV + \int f_i dV,
\]

where the subgrid scale turbulent stress \( \tau_{ij}^{gs} \) is defined as

\[
\tau_{ij}^{gs} \equiv \bar{\rho}(\bar{u}_i \bar{u}_j - \bar{u}_i \bar{u}_j).
\]

The term \( f_i \) is a body force used to represent additional momentum sources such as wind turbine blades, Coriolis effect, driving forces, etc. The Cauchy stress is provided by,

\[
\sigma_{ij} = 2\mu \bar{S}_{ij}^* - \bar{P} \delta_{ij}
\]

and the traceless rate-of-strain tensor defined as follows:

\[
\bar{S}_{ij}^* = \bar{S}_{ij} - \frac{1}{3} \delta_{ij} \bar{S}_{kk} = \bar{S}_{ij} - \frac{1}{3} \frac{\partial \bar{u}_k}{\partial x_k} \delta_{ij}.
\]

In a low Mach flow, as described in the low Mach theory section, the above pressure, \( \bar{P} \) is the perturbation about the thermodynamic pressure, \( P^{th} \). In a low speed compressible flow, i.e., flows confined to a closed domain with energy or mass addition in which the continuity equation has been modified to accommodate acoustics, this pressure is interpreted at the thermodynamic pressure itself.

For LES, \( \tau_{ij}^{gs} \) that appears in Equation (3.1) and defined in Equation (3.2) represents the subgrid stress tensor that must be closed. The deviatoric part of the subgrid stress tensor is defined as

\[
\tau_{ij}^{gs} = \tau_{ij}^{ks} - \frac{1}{3} \delta_{ij} \tau_{kk}^{gs}
\]

where the subgrid turbulent kinetic energy is defined as \( \tau_{kk}^{gs} = 2\bar{\rho}k \). Note that here, \( k \) represents the modeled turbulent kinetic energy as is formally defined as,

\[
\bar{\rho}k = \frac{1}{2} \bar{\rho}(u_k \bar{u}_k - \bar{u}_k \bar{u}_k).
\]

Model closures can use, Yoshizawa’s approach when \( k \) is not transported:

\[
\tau_{kk}^{gs} = 2C_1 \bar{\rho} \Delta^2 |\bar{S}|^2.
\]

Above, \( |\bar{S}| = \sqrt{2\bar{S}_{ij} \bar{S}_{ij}} \).
For low Mach-number flows, a vast majority of the turbulent kinetic energy is contained at resolved scales. For this reason, the subgrid turbulent kinetic energy is not directly treated and, rather, is included in the pressure as an additional normal stress. The Favre-filtered momentum equations then become

\[ \int \frac{\partial \bar{\rho} \bar{u}_i}{\partial t} dV + \int \bar{\rho} \bar{u}_i \bar{u}_j n_j dS + \int \left( \bar{P} + \frac{2}{3} \bar{\rho} k \right) n_i dS = \int 2(\mu + \mu_t) \left( \bar{S}_{ij} - \frac{1}{3} \bar{S}_{kk} \delta_{ij} \right) n_j dS + \int (\bar{\rho} - \rho_0) g_i dV, \]  

where LES closure models for the subgrid turbulent eddy viscosity \( \mu_t \) are either the constant coefficient Smagorinsky, WALE or the constant coefficient \( k_{\text{sgs}} \) model (see the turbulence section).

**Earth Coriolis Force**

For simulation of large-scale atmospheric flows, the following Coriolis force term can be added to the right-hand-side of the momentum equation ((3.1)):

\[ f_i = -2 \bar{\rho} \epsilon_{ijk} \Omega_j u_k. \]  

Here, \( \Omega \) is the Earth’s angular velocity vector, and \( \epsilon_{ijk} \) is the Levi-Civita symbol denoting the cross product of the Earth’s angular velocity with the local fluid velocity vector. Consider an “East-North-Up” coordinate system on the Earth’s surface, with the domain centered on a latitude angle \( \phi \) (changes in latitude within the computational domain are neglected). In this coordinate system, the integrand of (cor-term), or the Coriolis acceleration vector, is

\[ 2\bar{\rho} \omega \begin{bmatrix} u_n \sin \phi - u_e \cos \phi \\ -u_e \sin \phi \\ u_e \cos \phi \end{bmatrix}, \]  

where \( \omega \equiv ||\Omega||. \) Often, in geophysical flows it is assumed that the vertical component of velocity is small and that the vertical component of the acceleration is small relative to gravity, such that the terms containing \( \cos \phi \) are neglected. However, there is evidence that this so-called traditional approximation is not valid for some mesoscale atmospheric phenomena cite{Gerkema_etal:08}, and so the full Coriolis term is retained in Nalu. The implementation proceeds by first finding the velocity vector in the East-North-Up coordinate system, then calculating the Coriolis acceleration vector ((3.6)), then transforming this vector back to the model \( x-y-z \) coordinate system. The coordinate transformations are made using user-supplied North and East unit vectors given in the model coordinate system.

**Boussinesq Buoyancy Model**

In atmospheric and other flows, the density differences in the domain can be small enough as to not significantly affect inertia, but nonetheless the buoyancy term,

\[ \int (\bar{\rho} - \rho_0) g_i dV, \]  

may still be important. The Boussinesq model ignores the effect of density on inertia while retaining the buoyancy term in Equation (3.1). For the purpose of evaluating the buoyant force, the density is approximated as

\[ \frac{\rho}{\rho_0} \approx 1 - \beta(T - T_0), \]  

This leads to a buoyancy body force term that depends on temperature \( T \), a reference density \( \rho_0 \), a reference temperature \( T_0 \), and a thermal expansion coefficient \( \beta \) as

\[ \int -\rho_0 \beta(T - T_0) g_i dV. \]  

The flow is otherwise kept as constant density.
### 3.2.3 Filtered Mixture Fraction

The optional quantity used to identify the chemical state is the mixture fraction, \( Z \). While there are many different definitions of the mixture fraction that have subtle variations that attempt to capture effects like differential diffusion, they can all be interpreted as a local mass fraction of the chemical elements that originated in the fuel stream. The mixture fraction is a conserved scalar that varies between zero in the secondary stream and unity in the primary stream and is transported in laminar flow by the equation,

\[
\frac{\partial \rho Z}{\partial t} + \frac{\partial \rho u_j Z}{\partial x_j} = \frac{\partial}{\partial x_j} \left( \rho D \frac{\partial Z}{\partial x_j} \right),
\]  

(3.10)

where \( D \) is an effective molecular mass diffusivity.

Applying either temporal Favre filtering for RANS-based treatments or spatial Favre filtering for LES-based treatments yields

\[
\int \frac{\partial \tilde{\rho} \tilde{Z}}{\partial t} dV + \int \tilde{\rho} \tilde{u}_j \tilde{Z} n_j dS = \int \tau_{Z,j}^{\text{sgs}} n_j dS + \int \tilde{\rho} D \frac{\partial \tilde{Z}}{\partial x_j} n_j dS,
\]  

(3.11)

where sub-filter correlations have been neglected in the molecular diffusive flux vector and the turbulent diffusive flux vector is defined as

\[
\tau_{Z,j}^{\text{sgs}} \equiv \tilde{\rho} \left( \tilde{Z} \tilde{u}_j - \bar{Z} \bar{u}_j \right).
\]

This subgrid scale closure is modeled using the gradient diffusion hypothesis,

\[
\tau_{Z,j}^{\text{sgs}} = -\tilde{\rho} D_t \frac{\partial \tilde{Z}}{\partial x_j},
\]

where \( D_t \) is the turbulent mass diffusivity, modeled as \( \tilde{\rho} D_t = \mu_t / Sc_t \) where \( \mu_t \) is the modeled turbulent viscosity from momentum transport and \( Sc_t \) is the turbulent Schmidt number. The molecular mass diffusivity is then expressed similarly as \( \tilde{\rho} D = \mu / Sc \) so that the final modeled form of the filtered mixture fraction transport equation is

\[
\frac{\partial \tilde{\rho} \tilde{Z}}{\partial t} + \frac{\partial \tilde{\rho} \tilde{u}_j \tilde{Z}}{\partial x_j} = \frac{\partial}{\partial x_j} \left[ \left( \mu / Sc + \mu_t / Sc_t \right) \frac{\partial \tilde{Z}}{\partial x_j} \right].
\]

In integral form the mixture fraction transport equation is

\[
\int \frac{\partial \tilde{\rho} \tilde{Z}}{\partial t} dV + \int \tilde{\rho} \tilde{u}_j \tilde{Z} n_j dS = \int \left( \frac{\mu}{Sc} + \frac{\mu_t}{Sc_t} \right) \frac{\partial \tilde{Z}}{\partial x_j} n_j dS.
\]

### 3.2.4 Conservation of Energy

The integral form of the Favre-filtered static enthalpy energy equation used for turbulent transport is

\[
\int \frac{\partial \tilde{\rho} \tilde{h}}{\partial t} dV + \int \tilde{\rho} \tilde{u}_j \tilde{h} n_j dS = - \int \tilde{q}_j n_j dS - \int \tau_{h,j}^{\text{sgs}} n_j dS - \int \frac{\partial \tilde{P}}{\partial x_i} dV + \int \left( \frac{\partial \tilde{P}}{\partial t} + \tilde{u}_j \frac{\partial \tilde{P}}{\partial x_j} \right) dV + \int \tau_{\text{visc}} n_j dV + \int S_\theta dV.
\]  

(3.12)

The above equation is derived by starting with the total internal energy equation, subtracting the mechanical energy equation and enforcing the variable density continuity equation. Note that the above equation includes possible source terms due to thermal radiative transport, viscous dissipation, pressure work, and external driving sources (\( S_\theta \)).

Above, \( \frac{\partial \tilde{q}_j}{\partial x_i} \) represents the divergence of the radiative flux and is active when participating media radiation (PMR) coupling is active. At present, there is no sophisticated absorption coefficient model supported in the gas phase.
Therefore, this source term is fully applied to the enthalpy along with any possible linearizations that solely originate from the PMR realm solve and transfer.

The simple Fickian diffusion velocity approximation, Equation (3.22), is assumed, so that the mean diffusive heat flux vector \( \bar{q}_j \) is

\[
\bar{q}_j = - \left[ \frac{\kappa}{C_p} \frac{\partial h}{\partial x_j} - \frac{\mu}{\text{Pr}} \sum_{k=1}^{K} h_k \frac{\partial Y_k}{\partial x_j} \right] - \frac{\mu}{\text{Sc}} \sum_{k=1}^{K} h_k \frac{\partial Y_k}{\partial x_j}.
\]

If \( \text{Sc} = \text{Pr} \), i.e., unity Lewis number (\( \text{Le} = 1 \)), then the diffusive heat flux vector simplifies to

\[
\bar{q}_j = - \frac{\mu}{\text{Pr}} \frac{\partial h}{\partial x_j}.
\]

In the code base, the user has the ability to either specify a laminar Prandtl number, which is a constant, or provide a property evaluator for thermal conductivity. Inclusion of a Prandtl number prevails and ensures that the thermal conductivity is computed based on \( \kappa = \frac{C_p \mu}{\text{Pr}} \). The viscous dissipation term is closed by

\[
\tau_{ij} \frac{\partial u_i}{\partial x_j} = \left( (\mu + \mu_t) \left( \frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) - \frac{2}{3} \left( \bar{\rho} \kappa + \mu_t \frac{\partial \bar{u}_k}{\partial x_k} \delta_{ij} \right) \frac{\partial \bar{u}_i}{\partial x_j} \right)
\]

\[
= 2 \mu \bar{S}_{ij} + 2 \mu_t \left( \bar{S}_{ij} - \frac{1}{3} \bar{S}_{kk} \delta_{ij} \right) - \frac{2}{3} \bar{\rho} \kappa \delta_{ij} \frac{\partial \bar{u}_i}{\partial x_j}.
\]

The subgrid scale turbulent flux vector \( \tau_{h_{sgs}} \) in Equation (3.12) is defined as

\[
\tau_{h_{sgs}} = \bar{\rho} \left( \bar{h} u_j - \bar{h} \bar{u}_j \right).
\]

As with species transport, the gradient diffusion hypothesis is used to close this subgrid scale model,

\[
\tau_{h_{sgs}} = - \frac{\mu_t}{\text{Pr}_t} \frac{\partial \bar{h}}{\partial x_j},
\]

where \( \text{Pr}_t \) is the turbulent Prandtl number and \( \mu_t \) is the modeled turbulent eddy viscosity from momentum closure.

The resulting filtered and modeled turbulent energy equation is given by,

\[
\int \frac{\partial \bar{h}}{\partial t} dV + \int \bar{\rho} \bar{h} u_j n_j dS = \int \left( \frac{\mu}{\text{Pr}} + \frac{\mu_t}{\text{Pr}_t} \right) \frac{\partial \bar{h}}{\partial x_j} n_j dS - \int \frac{\partial \bar{h}^T}{\partial x_i} dV
\]

\[
+ \int \left( \frac{\partial \bar{P}}{\partial t} + \bar{u}_j \frac{\partial \bar{P}}{\partial x_j} \right) dV + \int \tau_{ij} \frac{\partial u_j}{\partial x_i} dV.
\]

The turbulent Prandtl number must have the same value as the turbulent Schmidt number for species transport to maintain unity Lewis number.

### 3.2.5 Review of Prandtl, Schmidt and Unity Lewis Number

For situations where a single diffusion coefficient is applicable (e.g., a binary gas system) the Lewis number is defined as:

\[
\text{Le} = \frac{\text{Sc}}{\text{Pr}} = \frac{\alpha}{D}.
\]

If the diffusion rates of energy and mass are equal,

\[
\text{Sc} = \text{Pr} \quad \text{and} \quad \text{Le} = 1.
\]

For completeness, the thermal diffusivity, Prandtl and Schmidt number are defined by,

\[
\alpha = \frac{\kappa}{\rho c_p}.
\]
\[ Pr = \frac{c_p \mu}{\kappa} = \frac{\mu}{\rho \alpha}, \quad (3.17) \]

and

\[ Sc = \frac{\mu}{\rho D}, \quad (3.18) \]

where \( c_p \) is the specific heat, \( \kappa \), is the thermal conductivity and \( \alpha \) is the thermal diffusivity.

### 3.2.6 Thermal Heat Conduction

For non-isothermal object response that may occur in conjugate heat transfer applications, a simple single material heat conduction equation is supported.

\[
\int \rho C_p \frac{\partial T}{\partial t} dV + \int q_j n_j dS = \int S dV. \quad (3.19)
\]

where \( q_j \) is again the energy flux vector, however, now in the following temperature form:

\[ q_j = -\kappa \frac{\partial T}{\partial x_j}. \]

### 3.2.7 ABL Forcing Source Terms

In LES of wind plant atmospheric flows, it is often necessary to drive the flow to a predetermined vertical velocity and/or temperature profile. In Nalu, this is achieved by adding appropriate source terms \( f_i \) to the momentum equation (3.1) and \( S_\theta \) to the enthalpy equation (3.12).

First, the momentum source term is discussed. The main objective of this implementation is to force the volume averaged velocity at a certain location to a specified value \( \langle u_i \rangle = U_i \). The brackets used here, \( <,> \), mean volume averaging over a certain region. In order to achieve this, a source term must be applied to the momentum equation. This source term can be better understood as a proportional controller within the momentum equation.

The velocity and density fields can be decomposed into a volume averaged component and fluctuations about that volume average as \( u_i = \langle u_i \rangle + u'_i \) and \( \bar{\rho} = \langle \bar{\rho} \rangle + \bar{\rho}' \). A decomposition of the plane averaged momentum at a given instance in time is then

\[
\langle \bar{\rho} u_i \rangle = \langle \bar{\rho} \rangle \langle u_i \rangle + \langle \bar{\rho}' u'_i \rangle. \]

We now wish to apply a momentum source based on a desired spatial averaged velocity \( U_i \). This can be expressed as:

\[
\langle \bar{\rho} u_i^* \rangle = \langle \bar{\rho} \rangle \langle u_i^* \rangle + \langle \bar{\rho}' u_i^* \rangle, \]

where \( u_i^* \) is an unknown reference velocity field whose volume average is the desired velocity \( \langle u_i^* \rangle = U_i \). Since the correlation \( \langle \bar{\rho}' u_i^* \rangle \) is unknown, we assume that

\[
\langle \bar{\rho}' u_i^* \rangle = \langle \bar{\rho}' u_i \rangle
\]

such that the momentum source can now be defined as:

\[
f_i = \alpha_u \left( \frac{\langle \bar{\rho} \rangle U_i - \langle \bar{\rho} \rangle \langle u_i \rangle}{\Delta t} \right) \quad (3.20)
\]

where \( \langle \rangle \) denotes volume averaging at a certain time \( t \), \( U_i \) is the desired spatial averaged velocity, and \( \Delta t \) is the time-scale between when the source term is computed (time \( t \)) and when it is applied (time \( t + \Delta t \)). This is typically chosen to be the simulation time-step. In the case of an ABL simulation with flat terrain, the volume averaging is done over an infinitesimally thin slice in the \( x \) and \( y \) directions, such that the body force is only a function of height \( z \) and time \( t \).
The implementation allows the user to prescribe relaxation factors $\alpha_u$ for the source terms that are applied. Nalu uses a default value of 1.0 for the relaxation factors if no values are defined in the input file during initialization.

The enthalpy source term works similarly to the momentum source term. A temperature difference is computed at every time-step and a forcing term is added to the enthalpy equation:

$$S_\theta = \alpha_\theta C_p \left( \theta_{\text{ref}} - \langle \theta \rangle \right) / \Delta t$$

where $\theta_{\text{ref}}$ is the desired spatial averaged temperature, $\langle \theta \rangle$ is the spatial averaged temperature, $C_p$ is the heat capacity, $\alpha_\theta$ is the relaxation factor, and $\Delta t$ is the time-scale.

The present implementation can vary the source terms as a function of time and space using either a user-defined table of previously computed source terms (e.g., from a precursor simulation or another model such as WRF), or compute the source term as a function of the transient flow solution.

### 3.2.8 Conservation of Species

The integral form of the Favre-filtered species equation used for turbulent transport is

$$\int \frac{\partial \bar{Y}_k}{\partial t} dV + \int \bar{\rho} \bar{Y}_k \bar{u}_j n_j dS = - \int \tau^{sgs}_{Y_{k,j}} n_j dS - \int \rho \bar{Y}_k \bar{u}_j \bar{n}_j dS + \int \bar{\omega}_k dV,$$  \hspace{1cm} (3.21)

where the form of diffusion velocities (see Equation (3.22)) assumes the Fickian approximation with a constant value of diffusion velocity for consistency with the turbulent form of the energy equation, Equation (3.12). The simplest form is Fickian diffusion with the same value of mass diffusivity for all species,

$$\hat{u}_{j,k} = -D \frac{1}{Y_k} \frac{\partial Y_k}{\partial x_j}.$$  \hspace{1cm} (3.22)

The subgrid scale turbulent diffusive flux vector $\tau^{sgs}_{Y_{k,j}}$ is defined as

$$\tau^{sgs}_{Y_{k,j}} = \bar{\rho} \left( \bar{Y}_k \bar{u}_j - \bar{\rho} \bar{u}_j \right).$$

The closure for this model takes on its usual gradient diffusion hypothesis, i.e.,

$$\tau^{sgs}_{Y_{k,j}} = -\frac{\mu_t}{Sc_t} \frac{\partial \bar{Y}_k}{\partial x_j},$$

where $Sc_t$ is the turbulent Schmidt number for all species and $\mu_t$ is the modeled turbulent eddy viscosity from momentum closure.

The Favre-filtered and modeled turbulent species transport equation is,

$$\int \frac{\partial \bar{\rho} \bar{Y}_k}{\partial t} dV + \int \bar{\rho} \bar{Y}_k \bar{u}_j n_j dS = \int \left( \frac{\mu}{Sc} + \frac{\mu_t}{Sc_t} \right) \frac{\partial \bar{Y}_k}{\partial x_j} n_j dS + \int \bar{\omega}_k dV.$$  \hspace{1cm} (3.23)

If transporting both energy and species equations, the laminar Prandtl number must be equal to the laminar Schmidt number and the turbulent Prandtl number must be equal to the turbulent Schmidt number to maintain unity Lewis number. Although there is a species conservation equation for each species in a mixture of $n$ species, only $n - 1$ species equations need to be solved since the mass fractions sum to unity and

$$\bar{Y}_n = 1 - \sum_{j \neq n} \bar{Y}_j.$$  

Finally, the reaction rate source term is expected to be added based on an operator split approach whereby the set of ODEs are integrated over the full time step. The chemical kinetic source terms can be sub-integrated within a time step using a stiff ODE integrator package.
The following system of ODEs are numerically integrated over a time step $\Delta t$ for a fixed temperature and pressure starting from the initial values of gas phase mass fraction and density,

$$
\dot{Y}_k = \frac{\dot{\omega}_k (Y_k)}{\rho}.
$$

The sources for the sub-integration are computed with the composition and density at the new time level which are used to approximate a mean production rate for the time step

$$
\dot{\omega}_k \approx \frac{\rho^* Y_k^* - \rho Y_k}{\Delta t}.
$$

### 3.2.9 Subgrid-Scale Kinetic Energy One-Equation LES Model

The subgrid scale kinetic energy one-equation turbulence model, or $k^{sgs}$ model, \cite{Dav97}, represents a simple LES closure model. The transport equation for subgrid turbulent kinetic energy is given by

$$
\int \frac{\partial \rho k_{sgs}}{\partial t} dV + \int \rho k_{sgs} \tilde{u}_j n_j dS = \int \frac{\mu_t}{\sigma_k} \frac{\partial k_{sgs}}{\partial x_j} n_j dS + \int (P_{k_{sgs}} - D_{k_{sgs}}) dV. \tag{3.24}
$$

The production of subgrid turbulent kinetic energy, $P_{k_{sgs}}$, is modeled by,

$$
P_k \equiv -\rho \tilde{u}_i \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j}, \tag{3.25}
$$

while the dissipation of turbulent kinetic energy, $D_{k_{sgs}}$, is given by

$$
D_{k_{sgs}} = \rho \epsilon k_{sgs}^{\frac{3}{2}},
$$

where the grid filter length, $\Delta$, is given in terms of the grid cell volume by

$$
\Delta = V^{\frac{1}{4}}.
$$

The subgrid turbulent eddy viscosity is then provided by

$$
\mu_t = C_{\mu} \Delta k_{sgs}^{\frac{1}{2}},
$$

where the values of $C_\epsilon$ and $C_{\mu}$ are 0.845 and 0.0856, respectively.

For simulations in which a buoyancy source term is desired, the code supports the Rodi form,

$$
P_b = \beta \frac{\mu T}{Pr} \frac{\partial T}{\partial x_i}.
$$

### 3.2.10 Shear Stress Transport (SST) RANS Model Suite

Although Nalu is primarily expected to be a LES simulation tool, RANS modeling is supported through the activation of the SST equation set.

It has been observed that standard 1998 $k - \omega$ models display a strong sensitivity to the free stream value of $\omega$ (see Mentor, \cite{MKL03}). To remedy, this, an alternative set of transport equations have been used that are based on smoothly blending the $k - \omega$ model near a wall with $k - \epsilon$ away from the wall. Because of the relationship between $\omega$ and $\epsilon$, the transport equations for turbulent kinetic energy and dissipation can be transformed into equations involving $k$ and $\omega$. Aside from constants, the transport equation for $k$ is unchanged. However, an additional cross-diffusion term is
present in the \( \omega \) equation. Blending is introduced by using smoothing which is a function of the distance from the wall, \( F(y) \). The transport equations for the Mentor 2003 model are then

\[
\int \frac{\partial \rho k}{\partial t} dV + \int \rho k \vec{u}_j n_j dS = \int (\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j} n_j + \int (P_k^\omega - \beta^* \rho k \omega) dV,
\]

\[
\int \frac{\partial \rho \omega}{\partial t} dV + \int \rho \omega \vec{u}_j n_j dS = \int (\mu + \sigma_\omega \mu_t) \frac{\partial \omega}{\partial x_j} n_j + \int 2(1 - F) \frac{\rho \sigma_\omega k}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} dV
\]

\[
+ \int \left( \hat{\gamma} \frac{\omega}{\nu_k} P_k^\omega - \hat{\beta} \rho \omega^2 \right) dV.
\]

The model coefficients, \( \hat{\sigma}_k, \hat{\sigma}_\omega, \hat{\gamma} \) and \( \hat{\beta} \) must also be blended, which is represented by

\[
\hat{\phi} = F \phi_1 + (1 - F) \phi_2,
\]

where \( \sigma_{k1} = 0.85, \sigma_{k2} = 1.0, \sigma_{\omega1} = 0.5, \sigma_{\omega2} = 0.856, \gamma_1 = \frac{5}{9}, \gamma_2 = 0.44, \beta_1 = 0.075 \) and \( \beta_2 = 0.0828 \). The blending function is given by

\[
F = \tanh(arg^1_1),
\]

where

\[
arg_1 = \min \left( \max \left( \frac{\sqrt{E}}{\beta^* \omega y}, \frac{500\mu}{\bar{\rho} y^2 \omega} \right), 4\frac{\rho \sigma_\omega k}{CD_{k\omega} y^2} \right).
\]

The final parameter is

\[
CD_{k\omega} = \max \left( 2\frac{\rho \sigma_\omega}{\omega} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}, 10^{-10} \right).
\]

An important component of the SST model is the different expression used for the turbulent viscosity,

\[
\mu_t = \frac{a_1 \rho k}{\max (a_1 \omega, SF_2)},
\]

where \( F_2 \) is another blending function given by

\[
F_2 = \tanh(arg^2_2).
\]

The final parameter is

\[
arg_2 = \max \left( \frac{2\sqrt{k}}{\beta^* \omega y}, \frac{500\mu}{\bar{\rho} y^2} \right).
\]

### 3.2.11 Direct Eddy Simulation (DES) Formulation

The DES technique is also supported in the code base when the SST model is activated. This model seeks to formally relax the RANS-based approach and allows for a theoretical basis to allow for transient flows. The method follows the method of Temporally Filtered NS formulation as described by Tieszen, [TDB05].

The SST DES model simply changes the turbulent kinetic energy equation to include a new minimum scale that manipulates the dissipation term.

\[
D_k = \frac{\rho k^{3/2}}{l_{DES}},
\]

where \( l_{DES} \) is the min(\( l_{SST}, c_{DES} \) \( l_{DES} \)). The constants are given by, \( l_{SST} = \frac{k^{1/2}}{\beta^* \omega} \) and \( c_{DES} \) represents a blended set of DES constants: \( c_{DES_1} = 0.78 \) and \( c_{DES_2} = 0.61 \). The length scale, \( l_{DES} \) is the maximum edge length scale touching a given node.

Note that the production term appearing in both the turbulent kinetic energy and specific dissipation rate equation is limited to a user-supplied scaling of the above dissipation term. Currently, all SST variants use a production to dissipation ratio limiting of ten.
### 3.2.12 Solid Stress

A fully implicit CVFEM (only) linear elastic equation is supported in the code base. This equation is either used for true solid stress prediction or for smoothing the mesh due to boundary mesh motion (either through fluid structure interaction (FSI) or prescribed mesh motion).

Consider the displacement for component $i$, $u_i$ equation set,

$$
\rho \frac{\partial^2 u_i}{\partial t^2} - \frac{\partial \sigma_{ij}}{\partial x_j} = F_i,
$$

(3.26)

where the Cauchy stress tensor, $\sigma_{ij}$ assuming Hooke’s law is given by,

$$
\sigma_{ij} = \mu \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \lambda \frac{\partial u_k}{\partial x_k} \delta_{ij},
$$

(3.27)

Above, the so-called Lame coefficients, Lame’s first parameter, $\lambda$ (also known as the Lame modulus) and Lame’s second parameter, $\mu$ (also known as the shear modulus) are provided as functions of the Young’s modulus, $E$, and Poisson’s ratio, $\nu$; here shown in the context of a isotropic elastic material,

$$
\mu = \frac{E}{2(1+\nu)},
$$

(3.28)

and

$$
\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}.
$$

(3.29)

Note that the above notation of $u_i$ to represent displacement is with respect to the classic definition of current and model coordinates,

$$
x_i = X_i + u_i
$$

(3.30)

where $x_i$ is the position, relative to the fixed, or previous position, $X_i$.

The above equations are solved for mesh displacements, $u_i$. The supplemental relationship for solid velocity, $v_i$ is given by,

$$
v_i = \frac{\partial u_i}{\partial t}.
$$

(3.31)

Numerically, the velocity might be obtained by a backward Euler or BDF2 scheme,

$$
v_i = \frac{\gamma_1 u_i^{n+1} + \gamma_2 u_i^n + \gamma_3 u_i^{n-1}}{\Delta t}
$$

(3.32)

### 3.2.13 Moving Mesh

The code base supports three notions of moving mesh: 1) linear elastic equation system that computes the stress of a solid 2) solid body rotation mesh motion and 3) mesh deformation via an external source.

The linear elastic equation system is activated via the standard equation system approach. Properties for the solid are specified in the material block. Mesh motion is prescribed by the input file via the `mesh_motion` block. Here, it is assumed that the mesh motion is solid rotation. For fluid/structure interaction (FSI) a mesh smoothing scheme is used to propagate the surface mesh displacement obtained by the solids solve. Simple mesh smoothing is obtained via a linear elastic solve in which the so-called Lame constants are proportional to the inverse of the dual volume. This allows for boundary layer mesh locations to be stiff while free stream mesh elements to be soft.
Additional mesh motion terms are required for the Eulerian fluid mechanics solve. Using the geometric conservative law the time and advection source term for a general scalar $\phi$ can be written as:

$$
\int \frac{\rho \phi}{\partial t} dV + \int \rho \phi (u_j - v_j) n_j dS + \int \rho \phi \frac{\partial v_k}{\partial x_j} dV,
$$

(3.33)

where $u_j$ is the fluid velocity and $v_j$ is the mesh velocity. Mesh velocities and the mesh velocity spatial derivatives are provided by the mesh smoothing solve. Activating the external mesh deformation or mesh motion block will result in the velocity relative to mesh calculation in the advection terms. The line command for source term, "gcl" must be activated for each equation for the volume integral to be included in the set of PDE solves. Finally, transfers are expected between the physics. For example, the solids solve is to provide mesh displacements to the mesh smoothing realm. The mesh smoothing procedure provides the boundary velocity, mesh velocity and projected nodal gradients of the mesh velocity to the fluids realm. Finally, the fluids solve is to provide the surface force at the desired solids surface. Currently, the pressure is transferred from the fluids realm to the solids realm. The ideal view of FSI is to solve the solids pde at the half time step. As such, in time, the $P^{n+\frac{1}{2}}$ is expected. The fsi_interface input line command attribute is expected to be set at these unique surfaces. More advanced FSI coupling techniques are under development by a current academic partner.

### 3.2.14 Radiative Transport Equation

The spatial variation of the radiative intensity corresponding to a given direction and at a given wavelength within a radiatively participating material, $I(s)$, is governed by the Boltzmann transport equation. In general, the Boltzmann equation represents a balance between absorption, emission, out-scattering, and in-scattering of radiation at a point. For combustion applications, however, the steady form of the Boltzmann equation is appropriate since the transient term only becomes important on nanosecond time scales which is orders of magnitude shorter than the fastest chemical.

Experimental data shows that the radiative properties for heavily sooting, fuel-rich hydrocarbon diffusion flames ($10^{-4}$% to $10^{-6}$% soot by volume) are dominated by the soot phase and to a lesser extent by the gas phase. Since soot emits and absorbs radiation in a relatively constant spectrum, it is common to ignore wavelength effects when modeling radiative transport in these environments. Additionally, scattering from soot particles commonly generated by hydrocarbon flames is several orders of magnitude smaller than the absorption effect and may be neglected. Moreover, the phase function is rarely known. However, for situations in which the phase function can be approximated by the iso-tropic scattering assumption, i.e., an intensity for direction $k$ has equal probability to be scattered in any direction $l$, the appropriate form of the Boltzmann radiative transport is

$$
s_i \frac{\partial}{\partial x_i} I(s) + (\mu_a + \mu_s) I(s) = \frac{\mu_a \sigma T^4}{\pi} + \frac{\mu_a}{4\pi} G,
$$

(3.34)

where $\mu_a$ is the absorption coefficient, $\mu_s$ is the scattering coefficient, $I(s)$ is the intensity along the direction $s$, $T$ is the temperature and the scalar flux is $G$. The black body radiation, $I_b$, is defined by $\frac{\sigma T^4}{\pi}$. Note that for situations in which the scattering coefficient is zero, the RTE reduces to a set of linear, decoupled equations for each intensity to be solved.

The flux divergence may be written as a difference between the radiative emission and mean incident radiation at a point,

$$
\frac{\partial q_r^i}{\partial x_i} = \mu_a \left[4\sigma T^4 - G\right],
$$

(3.35)

where $G$ is again the scalar flux. The flux divergence term is the same regardless of whether or not scattering is active.

The quantity, $G/4\pi$, is often referred to as the mean incident intensity. Note that when the scattering coefficient is non-zero, the RTE is coupled over all intensity directions by the scalar flux relationship.

The scalar flux and radiative flux vector represent angular moments of the directional radiative intensity at a point,

$$
G = \int_0^{2\pi} \int_0^{\pi} I(s) \sin \theta_z d\theta_z d\theta_{az},
$$
\[ q_i^r = \int_0^{2\pi} \int_0^{\pi} I(s) s_i \sin \theta_{zn} d\theta_{zn} d\theta_{az}, \]

where \( \theta_{zn} \) and \( \theta_{az} \) are the zenith and azimuthal angles respectively as shown in Figure Fig. 3.1.

\[ s = \sin \theta_{zn} \sin \theta_{az} i + \cos \theta_{zn} j + \sin \theta_{zn} \cos \theta_{az} k. \]

Fig. 3.1: Ordinate Direction Definition, \( s = \sin \theta_{zn} \sin \theta_{az} i + \cos \theta_{zn} j + \sin \theta_{zn} \cos \theta_{az} k. \)

The radiation intensity must be defined at all portions of the boundary along which \( s_i n_i < 0 \), where \( n_i \) is the outward directed unit normal vector at the surface. The intensity is applied as a weak flux boundary condition which is determined from the surface properties and temperature. The diffuse surface assumption provides reasonable accuracy for many engineering combustion applications. The intensity leaving a diffuse surface in all directions is given by

\[ I(s) = \frac{1}{\pi} \left[ \tau \sigma T_w^4 + \epsilon \sigma T_{\infty}^4 + (1 - \epsilon - \tau) H \right], \quad (3.36) \]

where \( \epsilon \) is the total normal emissivity of the surface, \( \tau \) is the transmissivity of the surface, \( T_w \) is the temperature of the boundary, \( T_{\infty} \) is the environmental temperature and \( H \) is the incident radiation, or irradiation (incoming radiative flux). Recall that the relationship given by Kirchoff’s Law that relates emissivity, transmissivity and reflectivity, \( \rho \), is

\[ \rho + \tau + \epsilon = 1. \]

where it is implied that \( \alpha = \epsilon. \)

### 3.3 Discretization Approach

Nalu supports two discretizations: control volume finite element and (CVFEM) edge-based vertex centered (EBVC). Each are finite volume formations and each solve for the primitives are are each considered vertex-based schemes. Considerable testing has provided a set of general rules as to which scheme is optimal. In general, all equations and boundary conditions support either equation discretization with exception of the solid stress equation which has only been implemented for the CVFEM technique.
For generalized unstructured meshes that have poor quality, CVFEM has been shown to excell in accuracy and robustness. This is mostly due to the inherent accuracy limitation for the non-orthogonal correction terms that appear in the diffusion term and pressure stabilization for the EBVC scheme. For generalized unstructured meshes of decent quality, either scheme is ideal. Finally, for highly structured meshes with substantail aspect ratios, the edge-based scheme is ideal.

In general, the edge-based scheme is at least two times faster per iteration than the element-based scheme. For some classes of flows, it can be up to four times faster. However, due to the lagged coupling between the projected nodal gradient equation and the dofs, on meshes with high non-orthogonality, nonlinear residual convergence can be delayed.

### 3.3.1 CVFEM Dual Mesh

The classic low Mach algorithm uses the finite volume technique known as the control volume finite element method, see Schneider, [SR87], or Domino, [Dom06]. Control volumes (the mesh dual) are constructed about the nodes, shown in Figure Fig. 3.2 (upper left). Each element contains a set of sub-faces that define control-volume surfaces. The sub-faces consist of line segments (2D) or surfaces (3D). The 2D segments are connected between the element centroid and the edge centroids. The 3D surfaces (not shown here) are connected between the element centroid, the element face centroids, and the edge centroids. Integration points also exist within the sub-control volume centroids.

Recent work by Domino, [Dom14], has provided a proof-of-concept higher order CVFEM implementation whereby the linear basis and dual mesh definition is extended to higher order. The current code base supports the usage of P=2 elements (quadratic) for both 2D and 3D quad/hex topologies. This method has been formally demonstrated to be third-order spatially accurate and second-order in-time accurate. General polynomial promotion has been deployed in the higher order github branch. Figure Fig. 3.2 illustrates a general polynomial promotion from P=1 to P=6 and demonstrated spectral convergence using the method of manufactured solutions in Figure Fig. 3.3.

When using CVFEM, the discretized equations described in this manual are evaluated at either subcontrol-surface integration points (terms that have been integrated by parts) or at the subcontrol volume (time and source terms). Interpolation within the element is obtained by the standard elemental basis functions,

\[ \phi_{ip} = \sum N_{kp}^i \phi_k. \]  

(3.37)

where the index \( k \) represents a loop over all nodes in the element.

Gradients at the subcontrol volume surfaces are obtained by taking the derivative of Eq. (3.37), to obtain,

\[ \frac{\partial \phi_{ip}}{\partial x_j} = \sum \frac{\partial N_{kp}}{\partial x_j} \phi_k. \]  

(3.38)

The usage of the CVFEM methods results in the canonical 27-point stencil for a structured hexahedral mesh.

### 3.3.2 Edge-Based Discretization

In the edge-based discretization, the dual mesh defined in the CVFEM method is used to pre-process both dual mesh nodal volumes (needed in source and time terms) and edge-based area vectors (required for integrated-by-parts quantities, e.g., advection and diffusion terms).

Consider Figure Fig. 3.4, which is the original set of CVFEM dual mesh quadrature points shown above in Figure Fig. 3.2. Specifically, there are four subcontrol volumes about node 5 that contribute to the nodal volume dual mesh. In an edge-based scheme, the time and source terms use single point quadrature by assembling these four subcontrol volume contributions (eight in 3D) into one single nodal volume. In most cases, source terms may include gradients that are obtained by using the larger element-based stencil.

The same reduction of gauss points is realized for the area vector. Consider the edge between nodes 5 and 6. In the full CVFEM approach, subcontrol surfaces within the top element (5,6,9,8) and bottom element (2,3,6,5) are reduced...
Fig. 3.2: Polynomial promotion for a canonical CVFEM quad element patch from $P = 1$ to $P = 6$. 
Fig. 3.3: A recent spectral convergence plot using the Method of Manufactured Solutions for $P = 1$ through $P = 8$. 
Fig. 3.4: A control volume centered about a finite-element node in a collection of 2-D quadrilateral elements (from [Dom06].)
to a single area vector at the edge midpoint of nodes 5 and 6. Therefore, advection and diffusion is now done in a manner very consistent with a cell centered scheme, i.e., classic “left”/“right” states.

The consolidation of time and source terms to nodal locations along with advection and diffusion at the edge midpoint results in a canonical five-point stencil in 2D and seven in 3D. Note the ability to handle hybrid meshes is readily performed one nodal volume and edge area are pre-processed. Edges and nodes are the sole topology that are iterated, thus making this scheme highly efficient, although inherently limited to second order spatial order of accuracy.

In general, the edge-based scheme is second order spatially accurate. Formal verification has been done to evaluate the accuracy of the EBVC relative to other implemented methods (Domino, [Dom14]). The edge-based scheme, which is based on dual mesh post-processing, represents a commonly used finite volume method in gas dynamics applications. The method also lends itself to pseudo-higher order methodologies by the blending of extrapolated values using the projected nodal gradient and gauss point values (as does CVFEM). This provides a fourth order accurate diffusion and advection operator on a structured mesh.

The use of a consistent mass matrix is less apparent in edge-based schemes. However, if desired, the full element-based stencil can be used by iterating elements and assembling to the nodes.

The advantage of edge-based schemes over cell centered schemes is that the scheme naturally allows for a mixed elemental discretization. Projected nodal gradients can be element- or edge-based. LES filters and nodal gradients can also exploit the inherent elemental basis that exists in the pure CVFEM approach. In our experience, the optimal scheme on high quality meshes uses the CVFEM for the continuity solve and EBVC discretization for all other equations. This combination allows for the full CVFEM diffusion operator for the pressure Poisson equation and the EBVC approach for equations where inverse Reynolds scaling reduces the importance of the diffusion operator. This scheme can be activated by the use of the use_edges: yes Realm line command in combination of the LowMachEOM system line command, element_continuity_eqs: yes.

### 3.3.3 Projected Nodal Gradients

In the edge or element-based algorithm, projected nodal gradients are commonplace. Projected nodal gradients are used in the fourth order pressure stabilization terms, higher order upwind methods, discontinuity capturing operators (DCO) and turbulence source terms. For an edge-based scheme, they are also used in the diffusion term when non-orthogonality of the mesh is noted.

There are many procedures for determining the projected nodal gradient ranging from element-based schemes to edge-based approached. In general, the projected nodal gradient is viewed as an $L_2$ minimization between the discontinuous Gauss-point value and the continuous nodal value. The projected nodal gradient, in an $L_2$ sense is given by,

$$\int w G_j \phi dV = \int \frac{\partial \phi}{\partial x_j} dV. \quad (3.39)$$

Using integration-by-parts and a piece-wise constant test function, the above equation is written as,

$$\int w_1 G_j \phi dV = \int \phi_{ip} n_j dS. \quad (3.40)$$

For a lumped L2 projected nodal gradient, the approach is based on a Green-Gauss integration,

$$G_j \phi = \int \frac{\phi_{ip} A_j}{dV}. \quad (3.41)$$

In the above lumped mass matrix approach, the value at the integration point can either be based on the CVFEM dual mesh evaluated at the subcontrol surface, i.e., the line command option, element or the edge, which evaluates the term at the edge midpoint using the assemble edge area vector. In all cases, the lumped mass matrix approach is strictly second order accurate. When running higher order CVFEM, a consistent mass matrix approach is required to maintain design order of the overall discretization. This is strictly due to the pressure stabilization whose accuracy can be affected by the form of the projected nodal gradient (see the Nalu theory manual or a variety of SNL-based publications).

### 3.3. Discretization Approach 81
In the description that follows, $\bar{G}_j \phi$ represent the average nodal gradient evaluated at the integration point of interest. The choice of projected nodal gradients is specified in the input file for each dof. Keywords element or edge are used to define the form of the projection. The forms of the projected nodal gradients is arbitrary relative to the chosen underlying discretization. For strongly non-orthogonal meshes, it is recommended to use an element-based projected nodal gradient for the continuity equation when the EBVC method is in use. In some limited cases, e.g., pressure, mixture fraction and enthalpy, the manage-png line command can be used to solve the simple linear system for the consistent mass matrix.

### 3.3.4 Time and Source Terms

Time and source terms also volumetric contributions and also use the dual nodal volume. In both discretization approaches, this assembly is achieved as a simple nodal loop. In some cases, e.g., the $k_{sgs}$ partial differential equation, the source term can use projected nodal gradients.

\[
\int \frac{\partial \rho \phi}{\partial t} dV = \int S \phi dV
\]

### 3.3.5 Diffusion

As already noted, for the CVFEM method, the diffusion term at the subcontrol surface integration points use the the elemental shape functions and derivatives. For the standard diffusion term, and using Eq. (3.38), the CVFEM diffusion operator contribution at a given integration point (here simply demonstrated for a 2D edge with prescribed area vector) is as follows,

\[
- \int \Gamma \frac{\partial \phi}{\partial x} A_j = - \Gamma_{ip} \left[ \left( \frac{\partial N_{i0}^{ip}}{\partial x} \phi_0 + \frac{\partial N_{i1}^{ip}}{\partial x} \phi_1 \right) A_x + \left( \frac{\partial N_{i0}^{ip}}{\partial y} \phi_0 + \frac{\partial N_{i1}^{ip}}{\partial y} \phi_1 \right) A_y \right]
\]

Standard Gauss point locations at the subcontrol surfaces can be shifted to the edge-midpoints for a more stable (monotonic) diffusion operator that is better conditioned for high aspect ratio meshes.

For the edge-based diffusion operator, special care is noted as there is no ability to use the elemental basis to define the diffusion operator. As with cell-centered schemes, non-orthogonal contributions for the diffusion operator arise due to a difference in direction between the assembled edge area vector and the distance vector between nodes on an edge. On skewed meshes, this non-orthogonality can not be ignored.

Following the work of Jasek, [Jas96], the over-relaxed approach is used. The form of any gradient for direction $j$ for field $\phi$ is

\[
\frac{\partial \phi}{\partial x_j} = G_j \phi + \left[ \left( \phi_R - \phi_L \right) \frac{A_j}{A_k} \right] \frac{A_j}{A_k} d\Gamma_k.
\]

(3.42)

In the above expression, we are iterating edges with a Left node $L$ and Right node $R$ along with edge-area vector, $A_j$. The $G_j \phi$ is simple averaging of the left and right nodes to the edge midpoint. In general, a standard edge-based diffusion term is written as,

\[
- \int \Gamma \frac{\partial \phi}{\partial x} A_j = - \Gamma_{ip} \left[ \left( G_x^e \phi A_x + G_y^e \phi A_y \right) + \left( \phi_R - \phi_L \right) \left( A_x A_x + A_y A_y \right) \right]
\]

\[
\left. \left. \frac{A_x A_x}{A_x d\Gamma_x} + \frac{A_y A_y}{A_y d\Gamma_y} \right) \left. \left( G_x^e \phi d\Gamma_x + G_y^e \phi d\Gamma_y \right) \right] A_x A_x + A_y A_y
\]

\[
\left. \left. \frac{A_x A_x}{A_x d\Gamma_x} + \frac{A_y A_y}{A_y d\Gamma_y} \right) \right].
\]
Momentum Stress

The viscous stress tensor, $\tau_{ij}$, is formed based on the standard gradients defined above for either the edge or element-based discretization. The viscous force for component $i$ is given by,

$$-\int \tau_{ij} A_j = -\int \mu_i \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) A_j.$$

For example, the x and y-component of viscous force is given by,

$$F_x = -\mu_i \left( \frac{\partial u_x}{\partial x} A_x + \frac{\partial u_x}{\partial y} A_y \right) - \mu_i \left( \frac{\partial u_x}{\partial x} A_x + \frac{\partial u_y}{\partial y} A_y \right),$$

$$F_y = -\mu_i \left( \frac{\partial u_y}{\partial x} A_x + \frac{\partial u_y}{\partial y} A_y \right) - \mu_i \left( \frac{\partial u_x}{\partial x} A_x + \frac{\partial u_y}{\partial y} A_y \right).$$

Note that the first part of the viscous stress is simply the standard diffusion term. Note that the so-called non-soloidal viscous stress contribution is frequently written in terms of projected nodal gradients. However, for CVFEM this procedure is rarely used given the elemental basis definition. As such, the use of shape function derivatives is clear.

The viscous stress contribution at an integration point for CVFEM (again using the 2D example with variable area vector) can be written as,

$$F_x = -\Gamma_{ip} \left[ \left( \frac{\partial N^i}{\partial x} u_{x0} + \frac{\partial N^i}{\partial y} u_{y1} \right) A_x + \left( \frac{\partial N^i}{\partial y} u_{x0} + \frac{\partial N^i}{\partial x} u_{y1} \right) A_y \right],$$

$$F_y = -\Gamma_{ip} \left[ \left( \frac{\partial N^i}{\partial y} u_{x0} + \frac{\partial N^i}{\partial x} u_{y1} \right) A_x + \left( \frac{\partial N^i}{\partial x} u_{x0} + \frac{\partial N^i}{\partial y} u_{y1} \right) A_y \right].$$

For the edge-based diffusion operator, the value of $\phi$ is substituted for the component of velocity, $u_i$ in the Eq. (3.42).

$$\frac{\partial u_i}{\partial x_j}_{ip} = G_j u_i + [(u_i - u_L) - G_i u_i dx] \frac{A_j}{A_k dx_k}.$$

Common approaches in the cell-centered community are to use the projected nodal gradients for the $\frac{\partial u_i}{\partial x_j}$ stress component. However, in Nalu, the above form of equation is used.

Substituting the relations of the velocity gradients for the x and y-component of force above provides the following expression used for the viscous stress contribution:

$$F_x = -\mu_i \left[ (G_x u_x A_x + G_y u_y A_y) + (u_x - u_L) \right] \frac{A_x A_y}{A_x dx + A_y dy}$$

$$- (G_x u_x dx + G_y u_y dy) \frac{A_x A_y}{A_x dx + A_y dy}$$

$$- \mu_i \left[ G_x u_x A_x + G_y u_y A_y \right] \frac{A_x A_y}{A_x dx + A_y dy}$$

$$+ (u_y - u_L) \frac{A_x A_y}{A_x dx + A_y dy}$$

$$- (G_x u_x dx + G_y u_y dy) \frac{A_x A_y}{A_x dx + A_y dy}$$

$$- (G_x u_y dx + G_y u_x dy) \frac{A_x A_y}{A_x dx + A_y dy},$$
In the above equation, \( \eta \), where \( \eta \) is the upwind factor, pseudo fourth order form (see below). For the classic Peclet number functional form (see Equation (3.45)) a hybrid blending between higher order upwind (\( \varphi_{\text{upw}} \)) and a generalized un-stabilized central (Galerkin) operator, \( \varphi_{\text{gcs}} \),

\[
F_y = -\mu_{\text{ip}} \left[ (G_x u_y A_x + G_y u_y A_y) + (u_y R - u_y L) A_x A_y + A_y A_y \right] \frac{A_x A_x + A_y A_y}{A_x dA_x + A_y dA_y} \\
- (G_x u_y dA_x + G_y u_y dA_y) \frac{A_x A_x + A_y A_y}{A_x dA_x + A_y dA_y} \\
- \mu_{\text{ip}} \left[ G_y u_x A_x + G_y u_y A_y + (u_y R - u_y L) A_x A_y \right] \frac{A_y A_y}{A_x dA_x + A_y dA_y} \\
+ (u_x R - u_x L) \frac{A_y A_y}{A_x dA_x + A_y dA_y} \\
- (G_y u_y dA_x + G_y u_x dA_y) \frac{A_y A_x}{A_x dA_x + A_y dA_y} \\
- (G_x u_x dA_x + G_y u_x dA_y) \frac{A_x A_x}{A_x dA_x + A_y dA_y}
\]

where above, the first [] and second [] represent the \( \frac{\partial u_i}{\partial x_j} A_j \) and \( \frac{\partial u_j}{\partial x_i} A_j \) contributions, respectively.

One can use this expression to recognize the ideal LHS sensitivities for row and columns for component \( u_i \).

### 3.4 Advection Stabilization

In general, advection for both the edge and element-based scheme is identical with standard exception of the location of the integration points. The full advection term is simply written as,

\[
ADV_\phi = \int \rho u_j \phi_{\text{ip}} A_j = \sum \hat{n} \phi_{\text{ip}},
\]

where \( \phi \) is \( u_i \), \( Z \), \( h \), etc.

The evaluation of \( \phi_{\text{ip}} \) defines the advection stabilization choice. In general, the advection choice is a cell Peclet blending between higher order upwind (\( \phi_{\text{upw}} \)) and a generalized un-stabilized central (Galerkin) operator, \( \phi_{\text{gcs}} \),

\[
\phi_{\text{ip}} = \eta \phi_{\text{upw}} + (1 - \eta) \phi_{\text{gcs}}.
\]

In the above equation, \( \eta \) is a cell Peclet blending. The generalized central operator can take on a pure second order or pseudo fourth order form (see below). For the classic Peclet number functional form (see Equation (3.45)) a hybrid upwind factor, \( \gamma \), can be used to ensure that no stabilization is added (\( \eta = 0 \)) or that full upwind stabilization is included (as will be shown, even with limiter functions). The hybrid upwind factor allows one to modify the functional blending function; values of unity result in the normal blending function response in Figure Fig. 3.5; values of zero yield a pure central operator, i.e., blending function of zero; values \( >> \) unity result in a blending function value of unity, i.e., pure upwind. The constant \( A \) is implemented with a value of 5. The value of this constant can not be changed via the input file. Note that this functional form is named the “classic” form within the input file.

The classic cell Peclet blending function is given by

\[
\eta = \frac{\gamma \text{Pe}^2}{5 + \gamma \text{Pe}^2}.
\]

The classic Peclet functional form makes it difficult to dial in the exact point at which the Peclet factor transitions from pure upwind to pure central. Therefore, an alternative form is provided that has a hyperbolic tangent functional form. This form allows one to specify the transition point and the width of the transition (see Equation (3.46)). The general tanh form is as follows,

\[
\eta = \frac{1}{2} [(a + b) + (b - a) \tanh(\frac{\text{Pe} - c_{\text{trans}}}{c_{\text{width}}})]
\]

Above, the constant \( c_{\text{trans}} \) represents the transition Peclet number while \( c_{\text{width}} \) represents the width of the transition. The value of \( \lambda \) is simply the shift between of the raw tanh function from zero while \( \delta \) is the difference between the
max Peclet factor (unity) and the minimum value prior to normalization. This approach ensures that the function starts at zero and asymptotes to unity,

\[ \eta = \frac{1}{2} \left[ 1 + \tanh \left( \frac{\text{Pe} - \text{c}_{\text{trans}}}{\text{c}_{\text{width}}} \right) \right]. \]

The cell-Peclet number is computed for each sub-face in the element from the two adjacent left (L) and right (R) nodes,

\[ \text{Pe} = \frac{1}{2} \left( u_{R,i} + u_{L,i} \right) \left( x_{R,i} - x_{L,i} \right). \]

A dot-product is implied by repeated indices.

Fig. 3.5: Cell-Peclet number blending function outlining classic (varying the hybrid factor \( \gamma \) from 1.0, 0.1 and 0.01; again \( A = 5 \)) and tanh functional form (\( c_{\text{trans}} = 2000 \) and \( c_{\text{width}} = 200 \)).

The upwind operator, \( \phi_{\text{upw}} \) is computed based on a blending of the extrapolated state (using the projected nodal gradient) and the linear interpolated state. Second or third order upwind is provided based on the value of \( \alpha_{\text{upw}} \) blending

\[
\phi_{\text{upw}} = \alpha_{\text{upw}} \phi_{\text{upw}}^L + \left( 1 - \alpha_{\text{upw}} \right) \phi_{\text{cds}}; \dot{m} > 0, \\
\alpha_{\text{upw}} \phi_{\text{upw}}^R + \left( 1 - \alpha_{\text{upw}} \right) \phi_{\text{cds}}; \dot{m} < 0.
\]

The extrapolated value based on the upwinded left (\( \phi^L \)) or right (\( \phi^R \)) state,

\[
\phi_{\text{upw}}^L = \phi^L + d^L_j \frac{\partial \phi^L}{\partial x_j}, \\
\phi_{\text{upw}}^R = \phi^R - d^R_j \frac{\partial \phi^R}{\partial x_j}.
\]

The distance vectors are defined based on the distances between the L/R points and the integration point (for both edge or element-based),

\[
d^L_j = x^p_j - x^L_j, \\
d^R_j = x^R_j - x^p_j.
\]

### 3.4. Advection Stabilization
In the case of all transported quantities, a Van Leer limiter of the extrapolated value is supported and can be activated within the input file (using the solution options “limiter” specification).

Second order central is simply written as a linear combination of the nodal values,

$$\phi_{cds} = \sum N_i^p \phi_k.$$  \hspace{1cm} (3.50)

where \(N_i^p\) is either evaluated at the subcontrol surface or edge midpoint. In the case of the edge-based scheme, the edge midpoint evaluation provides for a skew symmetric form of the operator.

The generalized central difference operator is provided by blending with the extrapolated values and second order Galerkin,

$$\phi_{gcds} = \frac{1}{2} \left( \hat{\phi}^L_{upw} + \hat{\phi}^R_{upw} \right),$$  \hspace{1cm} (3.51)

where,

$$\hat{\phi}^L_{upw} = \alpha \hat{\phi}^L_{upw} + (1 - \alpha) \phi_{cds},$$

$$\hat{\phi}^R_{upw} = \alpha \hat{\phi}^R_{upw} + (1 - \alpha) \phi_{cds}.$$  \hspace{1cm} (3.52)

The value of \(\alpha\) provides the type of psuedo fourth order stencil and is specified in the user input file.

The above set of advection operators can be used to define an idealized one dimensional stencil denoted by \((i - 2, i - 1, i, i + 1, i + 2)\), where \(i\) represents the particular row for the given transported variable. Below, in the table, the stencil can be noted for each value of \(\alpha\) and \(\alpha_{upw}\).

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\alpha_{upw})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>(+\frac{1}{12})</td>
<td>n/a</td>
</tr>
<tr>
<td>(+\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>(+\frac{1}{6})</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(+\frac{1}{8})</td>
<td>(\frac{1}{8})</td>
</tr>
<tr>
<td>(+\frac{1}{10})</td>
<td>(\frac{1}{10})</td>
</tr>
<tr>
<td>(+\frac{1}{12})</td>
<td>(\frac{1}{12})</td>
</tr>
<tr>
<td>(+\frac{1}{14})</td>
<td>(\frac{1}{14})</td>
</tr>
<tr>
<td>(+\frac{1}{16})</td>
<td>(\frac{1}{16})</td>
</tr>
<tr>
<td>(+\frac{1}{18})</td>
<td>(\frac{1}{18})</td>
</tr>
<tr>
<td>(+\frac{1}{20})</td>
<td>(\frac{1}{20})</td>
</tr>
<tr>
<td>(+\frac{1}{22})</td>
<td>(\frac{1}{22})</td>
</tr>
<tr>
<td>(+\frac{1}{24})</td>
<td>(\frac{1}{24})</td>
</tr>
<tr>
<td>(+\frac{1}{26})</td>
<td>(\frac{1}{26})</td>
</tr>
<tr>
<td>(+\frac{1}{28})</td>
<td>(\frac{1}{28})</td>
</tr>
<tr>
<td>(+\frac{1}{30})</td>
<td>(\frac{1}{30})</td>
</tr>
</tbody>
</table>

It is noted that by varying these numerical parameters, both high quality, low dissipation operators suitable for LES usage or limited, monotonic operators suitable for RANS modeling can be accomodated.

### 3.5 Pressure Stabilization

A number of papers describing the pressure stabilization approach that Nalu uses are in the open literature, Domino, [Dom06], [Dom08], [Dom14]. Nalu supports an incremental fourth order approximate projection scheme with time step scaling. By scaling, it is implied that a time scale based on either the physical time step or a combined elemental advection and diffusion time scale based on element length along with advection and diffusional parameters. An alternative to the approaximate projection concept is to view the method as a variational multiscale (VMS) method whereye the momentum residual augments the continuity equation. This allows for a diagonal entry for the pressure degree of freedom.

Here, the fine-scale momentum residual is written in terms of a projected momentum residual evaluated at the Gauss point,

$$R(u_i) = \left( \frac{\partial p}{\partial x_j} - G_j p \right).$$  \hspace{1cm} (3.53)
The above equation is derived simply by writing a fine-scale momentum equation at the Gauss-points and using the nodal projected residual to reconstruct the individual terms. Therefore, the continuity equation solved, using the VMS-based projected momentum residual, is

\[ \int \frac{\partial \bar{\rho}}{\partial t} \, dV + \int (\bar{\rho} \hat{u}_i + \tau G_i \bar{P}) \, n_i \, dS = \int \tau \frac{\partial \bar{P}}{\partial x_i} n_i \, dS. \]

Above, \( G_i \bar{P} \) is defined as a L2 nodal projection of the pressure gradient. Note that the notion of a provisional velocity, \( \hat{u}_i \), is used to signify that this velocity is the product of the momentum solve. The difference between the projected nodal gradient interpolated to the gauss point and the local gauss point pressure gradient provides a fourth order pressure stabilization term. This term can also be viewed as an algebraic form for the momentum residual. For the continuity equation only, a series of element-based options that shift the integration points to the edges of the iterated element is an option.

### 3.5.1 The Role of \( \dot{m} \)

In all of the above equations, the advection term is written in terms of a linearized mass flow rate including a sum over all subcontrol surface integration points, Eq \( (3.43) \). The mass flow rate includes the full set of stabilization terms obtained from the continuity solve,

\[ \dot{m} = (\bar{\rho} \hat{u}_i + \tau G_i \bar{P} - \tau \frac{\partial \bar{P}}{\partial x_i}) \, n_i \, dS. \]

The inclusion of the pressure stabilization terms in the advective transport for the primitives is a required step for ensuring that the advection velocity is mass conserving. In practice, the mass flow rate is stored at each integration point in the mesh (edge midpoints for the edge-based scheme and subcontrol surfaces for the element-based scheme). When the mixed CVFEM/EBVC scheme is used, the continuity equation solves for a subcontrol-surface value of the mass flow rate. These values are assembled to the edge for use in the EBVC discretization approach. Therefore, the storage for mass flow rate is higher.

### 3.6 RTE Stabilization

The RTE is solved using the method of discrete ordinates using the symmetric Thurgood quadrature set. The discrete ordinates method is one in which discrete directions of the intensity are solved. The quadrature order, \( N \), defines the number of ordinate directions that are solved in a given iteration. In the case of non-scattering media, this results is a set of decoupled linear partial differential equations. For the symmetric Thurgood set, the number of ordinate directions is given by \( 8N^2 \). Values of \( N \) that are required for suitable accuracy starts at \( N = 2 \) with more than adequate resolution at \( N = 4 \).

For each ordinate direction, a weight is provided, \( w_k \) (not to be confused with the test function \( w \)). For each intensity ordinate direction, \( I_k \), integrated quantities such as scalar flux and radiative heat flux are computed as,

\[ G = \sum I_k w_k \]

and,

\[ q_j = \sum I_k s_j w_k. \]

The stabilization that is used in the RTE equation can be placed in the class of residual-based stabilization. In this particular implementation, the scaled residual of the RTE equation is added. This implementation has its roots in the classic variational multiscale (VMS).
In the VMS framework, the degree of freedom is decomposed in terms of its resolved and fine scale, \( I + I' \). Without specific definition of the test function, the weighted residual statement for the RTE within a VMS framework is given by,

\[
\int w \left( s_i \frac{\partial}{\partial x_i} (I (s) + I' (s)) + (\mu_a + \mu_s) (I (s) + I' (s)) - \frac{\mu_a \sigma T^4}{\pi} - \frac{\mu_s}{4\pi} G \right) \, dV = 0. \tag{3.54}
\]

Grouping resolved and fine scale terms results in an equation takes the form of a standard Galerkin contribution in addition to the fine structure statement,

\[
\int w \left( s_i \frac{\partial}{\partial x_i} I (s) + (\mu_a + \mu_s) I - \frac{\mu_a \sigma T^4}{\pi} - \frac{\mu_s}{4\pi} G \right) \, dV \\
+ \int w \left( s_i \frac{\partial}{\partial x_i} I' (s) + (\mu_a + \mu_s) I' \right) \, dV = 0. \tag{3.55}
\]

Note that the isotropic source term has not contributed to the VMS framework other than through the right hand source term.

In general, gradients in the fine scale quantity are to be avoided. Therefore, the first term in the second line of Eq. (3.55) is integrated by parts to yield the following form (note the boundary term, \( \int_{\Gamma} \) that is shown below is frequently dropped)

\[
\int w \left( s_i \frac{\partial}{\partial x_i} I (s) + (\mu_a + \mu_s) I - \frac{\mu_a \sigma T^4}{\pi} - \frac{\mu_s}{4\pi} G \right) \, dV \\
- \int I' s_i \frac{\partial w}{\partial x_i} \, dV + \int w (\mu_a + \mu_s) I' \, dV = 0. \tag{3.56}
\]

The following ansatz, which now includes the classic stabilization parameter, \( \tau \), provides closure of the above fine scale equation,

\[
I' = -\tau \left( s_i \frac{\partial}{\partial x_i} I (s) + (\mu_a + \mu_s) I (s) - \frac{\mu_a \sigma T^4}{\pi} - \frac{\mu_s}{4\pi} G \right) = -\tau R(s) \tag{3.57}
\]

Substituting Eq. (3.57) into Eq. (3.56) yields,

\[
\int w \left( s_i \frac{\partial}{\partial x_i} I (s) + (\mu_a + \mu_s) I - \frac{\mu_a \sigma T^4}{\pi} - \frac{\mu_s}{4\pi} G \right) \, dV \\
+ \int \tau s_i \frac{\partial w}{\partial x_i} R(s) \, dV - \int_{\Gamma} \tau w R(s) s_i n_i \, dS - \int w (\mu_a + \mu_s) R(s) \, dV = 0. \tag{3.58}
\]

In the above equation, the residual of the intensity equation for ordinate \( s \) is denoted by \( R(s) \). A compact form of the equation is provided by defining a modified test function, \( \tilde{w} \), (again note retention of the stabilized boundary term)

\[
\int \tilde{w} \left( s_i \frac{\partial}{\partial x_i} I (s) + (\mu_a + \mu_s) I - \frac{\mu_a \sigma T^4}{\pi} - \frac{\mu_s}{4\pi} G \right) \, dV \\
- \beta \int_{\Gamma} \tau w R(s) s_i n_i \, dS = 0. \tag{3.59}
\]

where \( \tilde{w} \) is simply equal to,

\[
\tilde{w} = w + \tau \left( s_j \frac{\partial w}{\partial x_j} + \alpha (\mu_a + \mu_s) w \right). \tag{3.60}
\]

When \( \alpha = -1 \), we have the above VMS derivation; for \( \alpha = 1 \), Galerkin Least Squares is realized; finally for \( \alpha = 0 \), we have SUPG. For any formulation other than VMS, the residual contribution at the boundaries of the domain is dropped (\( \beta = 0 \).
The full residual-based equation is placed in divergence form,
\[
\int \tilde{w} \left( \frac{\partial}{\partial x_i} s_i I(s) + (\mu_a + \mu_s) I(s) - \frac{\mu_a \sigma T^4}{\pi} - \frac{\mu_s}{4\pi} G \right) dV
- \beta \int_{\Gamma} \tau w R(s) s_i n_i dS = 0.
\] (3.61)

and split into its Galerkin and stabilized contributions,
\[
\int \tilde{w} \left( \frac{\partial}{\partial x_i} s_i I(s) + (\mu_a + \mu_s) I(s) - \frac{\mu_a \sigma T^4}{\pi} - \frac{\mu_s}{4\pi} G \right) dV
+ \int_{\Gamma} \tau s_j \frac{\partial w}{\partial x_j} R(s) dV
+ \alpha \int \tau w (\mu_a + \mu_s) R(s) dV
- \beta \int_{\Gamma} \tau w R(s) s_i n_i dS = 0.
\] (3.62)

Note that the first term in the above equation is integrated by parts,
\[
\int \tilde{w} \frac{\partial}{\partial x_i} s_i I(s) dV = - \int I(s) \frac{\partial w}{\partial x_i} dV + \int_{\Gamma} w s_i I(s) n_i dS.
\]

Again, the usage of $\Gamma$ provides emphasis that the contribution is a boundary (exposed face) condition. Therefore, the full VMS-based stabilized RTE equation is as follows,
\[
\int I(s) \frac{\partial w}{\partial x_i} dV + \int_{\Gamma} w s_i I(s) n_i dS
+ \int_{\Gamma} \tau s_j \frac{\partial w}{\partial x_j} R(s) dV
+ \alpha \int \tau w (\mu_a + \mu_s) R(s) dV
- \beta \int_{\Gamma} \tau w R(s) s_i n_i dS = 0.
\] (3.63)

3.6.1 Definition of the test function

Following the work of Martinez, [Mar05], the test function is chosen to be a piecewise-constant value within the control volume, $w = w_I$ and zero outside of this control volume (Heaviside). A key property of this function, as pointed out by Martinez, is that its gradient is a distribution of delta functions on the control volume boundary:
\[
\frac{\partial w_I}{\partial x_i} = - n_I \delta(x - x_{\Gamma_I})
\] (3.64)

where $\Gamma_I$ is boundary of control volume $I$ and $n_I$ is the outward normal on that boundary. Substituting this relationship into the residual equation provides the final form of vertex-centered finite volume RTE stabilized equation,
\[
\int I(s) s_i n_i dS + \int \left( (\mu_a + \mu_s) I(s) - \frac{\mu_a \sigma T^4}{\pi} - \frac{\mu_s}{4\pi} G \right) dV
+ \int_{\Gamma} s_i I(s) n_i dS
- \int \tau R(s) s_i n_i dS + \alpha \int \tau (\mu_a + \mu_s) R(s) dV - \beta \int_{\Gamma} \tau R(s) s_i n_i dS = 0.
\] (3.65)
Given this equation, either an edge-based or element-based scheme can be used. For \( \alpha = 0 \) and \( \beta = 0 \), it is noted that classic SUCV is obtained. The second line of Eq. (3.65) represents a boundary contribution. This is where the intensity boundary condition (Eq. (3.115)) is applied. As noted in the RTE equation section, when \( s_j n_j \) is greater than zero, the interpolated intensity based on the surface nodal values is used. However, when \( s_j n_j \) is less than zero, the intensity boundary condition value is used. Since the original RTE equation was integrated by parts, a natural surface flux contribution is applied. In alternative discretization approaches, e.g., the SUPG FEM-based Sierra Thermal Radiation Module: Syrinx code, the RTE is not integrated by parts. Therefore, no boundary term exists, and, therefore, a dirichlet bc is applied. At corner nodes, this approach can lead to non-intuitive approaches since the corner node might have surface facets that are both incoming and outgoing. Weak integration of the flux term eliminated this complexity.

### 3.6.2 The form of \( \tau \)

The value of the stabilization parameter \( \tau \) can take on a variety of forms. A classic derivation provides the form of \( \tau \) to be broken out into two forms, \( \tau_{adv} = \frac{h}{2} \) and \( \tau_{diff} = \frac{1}{(\mu_a + \mu_s)} \). An ad-hoc blending is given by,

\[
\tau = \left( \frac{1}{\frac{h^2}{2} + (\mu_a + \mu_s)^2} \right)^{\frac{1}{2}}
\]

Finally, the classic GFEM form of \( \tau \) is given by use of the metric tensor for the element mapping is noted,

\[
\tau = \beta^* [s_i g_{ij} s_j]^{-\frac{1}{2}}
\]

with \( \beta^* \) equal to unity for SUCV and \( \frac{2}{15^2} \) for FEM.

### 3.6.3 Pure Edge-based Upwind Method

The residual-based stabilization approach can lead to predicting negative intensities. This is simply due to the fact that the stabilization approach (SUPG) is a linear approach. Extensions of this residual-based stabilization to include a discontinuity capturing operator (DCO) are underway. This adds a non-linear stabilization approach that will, hopefully, eliminate negative intensity predictions.

Alternatively, a first order upwind approach has been implemented by using EBVC discretization. At this point, no higher order upwind extensions have been implemented. For the upwind implementation, the equation solved is,

\[
\int I(s) s_i n_i dS + \int \left( (\mu_a + \mu_s) I(s) - \frac{\mu_a T^4}{\pi} - \frac{\mu_s}{4\pi} G \right) dV + \int_{\Gamma} s_i I(s) n_i dS = 0
\]

In the above equation, the “advection operator”, \( I(s) s_i n_i dS \) is approximated as using the “upwind” intensity, e.g., if \( s_j n_j \) is greater than zero, the left nodal value is used.

### 3.6.4 Finite Element SUPG Form

For the FEM, the test function is the standard weighting. Assuming a pure SUPG formulation, i.e., \( \alpha = \beta = 0 \) in Equation (3.63), thereby reducing the final form to the following:

\[
\int \left( -I(s) s_i \frac{\partial w}{\partial x_i} + w [ (\mu_a + \mu_s) I(s) - \frac{\mu_a T^4}{\pi} - \frac{\mu_s}{4\pi} G ] \right) dV + \int_{\Gamma} w s_i I(s) n_i dS + \int \tau s_j \frac{\partial w}{\partial x_j} R(s) dV
\]
The weak boundary condition is applied in a similar manner as with the CVFEM and EBVC form, however, using the appropriate FEM test test function definition. Finally, the form of $\tau$ follows the above CVFEM form.

3.7 Nonlinear Stabilization Operator (NSO)

An alternative to classic Peclet number blending is the usage of a discontinuity capturing operator (DCO), or in the low Mach context a nonlinear stabilization operator (NSO). In this method, an artificial viscosity is defined that is a function of the local residual and scaled computational gradients. Viable usages for the NSO can be advection/diffusion problems in addition to the aforementioned RTE VMS approach.

The formal finite element kernel for a NSO approach is as follows,

$$
\sum_e \int_{\Omega} \nu(R) \frac{\partial w}{\partial x_i} g^{ij} \frac{\partial \phi}{\partial x_j} d\Omega, 
$$

(3.70)

where $\nu(R)$ is the artificial viscosity which is a function of the pde fine-scale residual and $g^{ij}$ is the covariant metric tensor).

For completeness, the covariant and contravariant metric tensor are given by,

$$
g^{ij} = \frac{\partial x_i}{\partial \xi_k} \frac{\partial x_j}{\partial \xi_k}, 
$$

(3.71)

and

$$
g_{ij} = \frac{\partial \xi_k}{\partial x_i} \frac{\partial \xi_k}{\partial x_j}, 
$$

(3.72)

where $\xi = (\xi_1, \xi_2, \xi_3)^T$. The form of $\nu(R)$ currently used is as follows,

$$
\nu = \sqrt{R_k R_k} \frac{\partial \phi}{\partial x_i} g^{ij} \frac{\partial \phi}{\partial x_j}. 
$$

(3.73)

The classic paper by Shakib ( [SHZ91]) represents the genesis of this method which was done in the acoustically compressible context.

A residual for a classic advection/diffusion/source pde is simply the fine scale residual computed at the gauss point,

$$
\hat{R} = \frac{\partial \rho \phi}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j \phi - \mu e f f \frac{\partial \phi}{\partial x_j}) - S. 
$$

(3.74)

Note that the above equation requires a second derivative whose source is the diffusion term. The first derivative is generally determined by using projected nodal gradients. As will be noted in the pressure stabilization section, the advection term carries the pressure stabilization terms. However, in the above equation, these terms are not explicitly noted. Therefore, an option is to subtract the fine scale continuity equation to obtain the final general form of the source term,

$$
R = \hat{R} - \phi \left( \frac{\partial \rho}{\partial t} + \frac{\partial \rho u_j}{\partial x_j} \right). 
$$

(3.75)

An alternative to the fine-scale PDE is a form that is found by differencing the linearized form of the residual from the nonlinear residual,

$$
R = \frac{\partial \rho u_j \phi}{\partial x_j} - \left( \phi \frac{\partial \rho u_j}{\partial x_j} + \rho u_j \frac{\partial \phi}{\partial x_j} \right). 
$$

(3.76)

The above resembles a commutation error in the nonlinear advection term.
In general, the NSO-\( \nu \) is prone to precision issues when the gradients are very close to zero. As such, the value of \( \nu \) is limited to a first-order like value. This parameter is proposed as follows: if an operator were written as a Galerkin (un-stabilized) plus a diffusion operator, what is the value of the diffusion coefficient such that first-order upwind is obtained for the combined operator? This upwind limited value of \( \nu \) provides the highest value that this coefficient can (or should) be. The current form of the limited upwind \( \nu \) is as follows,

\[
\nu_{\text{upw}} = C_{\text{upw}}(\rho u_i g_{ij} u_j)^{\frac{1}{2}}
\]  

(3.77)

where \( C_{\text{upw}} \) is generally taken to be 0.1.

Using a piecewise-constant test function suitable for CVFEM and EBVC schemes (the reader is refered to the VMS RTE section), Eq. (3.70) can be written as,

\[
- \sum_e \int_\Gamma \nu(R)^{ij} \frac{\partial \phi}{\partial x_j} n_i dS. \tag{3.78}
\]

A fourth order form, which writes the stabilization as the difference between the Gauss-point gradient and the projected nodal gradient interpolated to the Gauss-point, is also supported,

\[
- \sum_e \int_\Gamma \nu(R)^{ij} (\frac{\partial \phi}{\partial x_j} - G_j \phi) n_i dS. \tag{3.79}
\]

### 3.7.1 NSO Based on Kinetic Energy Residual

An alternative formulation explored is to share the general kernel form shown in Equation (3.79), however, compute \( \nu \) based on a fine-scale kinetic energy residual. In this formulation, the fine-scale kinetic energy residual is obtained from the fine-scale momentum residual dotted with velocity. As with the continuity stabilization approach, the fine-scale momentum residual is provided by Equation (3.80). Therefore, the fine-scale kinetic energy is written as,

\[
R_{ke} = u_j \left( \frac{\partial p}{\partial x_j} - G_j p \right) \frac{1}{2}, \tag{3.80}
\]

while the denominator for \( \nu \) now includes the gradient in \( ke \),

\[
\nu = \sqrt{\frac{R_{ke} R_{ke}}{\frac{\partial R_{ke}}{\partial x_j} \frac{\partial R_{ke}}{\partial x_k}}}. \tag{3.81}
\]

The kinetic energy is simply given by,

\[
ke = \frac{u_k u_k}{2} \tag{3.82}
\]

The kinetic energy form of \( \nu \) is used for all equation sets with transformation by usage of a turbulent Schmidt/Prandtl number.

### 3.7.2 Local or Projected NSO Diffusive Flux Coefficient

While the NSO kernel is certainly evaluated at the subcontrol surfaces, the evaluation of \( \nu \) can be computed by a multitude of approaches. For example, the artificial diffusive flux coefficient can be computed locally (with local residuals and local metric tensors) or can be projected to the nodes (via an \( L_{oo} \) or \( L_2 \) projection) and re-interpolated to the gauss points. The former results in a sharper local value while the later results in a more filtered-like value. The code base only supports a local NSO \( \nu \) calculation.
3.7.3 General Findings

In general, the NSO approach seems to work best when running the fourth-order option as the second-order implementation still looks more diffuse. When compared to the standard MUSCL-limited scheme, the NSO is the preferred choice. More work is underway to improve stabilization methods. Note that a limited set of NSOs are activated in the code base with specific interest on scalar transport, e.g., momentum, mixture fraction and static enthalpy transport. When using the 4th order method, the consistent mass matrix approach for the projected nodal gradients is supported for higher order.

3.7.4 NSO as a Turbulence Model

The kinetic energy residual form has been suggested to be used as a turbulence model (Guermond and Larios, 2015). However, inspection of the above NSO kernel form suggests that the model form is not symmetric. Rather, in the context of turbulence modeling, is closer to the metric tensor acting on the difference between the rate of strain and antisymmetric tensor. As such, the theory developed, e.g., for eigenvalue perturbations of the stress tensor (see Jofre and Domino, 2017) can not be applied. In this section, a new form of the NSO is provided in an effort to be used for an LES closure.

In this proposed NSO formulation, the subgrid stress tensor, \( \tau_{ij}^{sgs} = \bar{u}_i \bar{u}_j - \bar{u}_i \bar{u}_j, \) is given by,

\[
\tau_{ij}^{sgs} = -2 \rho \nu g^{ij} (S_{ij} - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}) = -2 \rho \nu g^{ij} S_{ij}. \tag{3.83}
\]

Interestingly, the units of \( \nu \) are of an inverse time scale while the product \( 2 \rho \nu g^{ij} \) can be viewed as an non-isotropic eddy viscosity, \( \mu_{ij}^{e} \).

The first order clipping may be relaxed by defining \( \nu \) as,

\[
\nu = \frac{|R_{ke}|}{||ke||_\infty}. \tag{3.84}
\]

The above form would be closer to what Guermond uses and would avoid the divide-by-zero noted in regions of uniform flow.

3.8 Turbulence Modeling

Unlike a RANS approach which models most or all of the turbulent fluctuations, LES directly solves for all resolved turbulent length scales and only models the smallest scales below the grid size. In this way, a majority of the problem-dependent, energy-containing turbulent structure is directly solved in a model-free fashion. The subgrid scales are closer to being isotropic than the resolved scales, and they generally act to dissipate turbulent kinetic energy cascaded down from the larger scales in momentum-driven turbulent flows. Modeling of these small scales is generally more straightforward than RANS approaches, and overall solutions are usually more tolerant to LES modeling errors because the subgrid scales comprise such a small portion of the overall turbulent structure. While LES is generally accepted to be much more accurate than RANS approaches for complex turbulent flows, it is also significantly more expensive than equivalent RANS simulations due to the finer grid resolution required. Additionally, since LES results in a full unsteady solution, the simulation must be run for a long time to gather any desired time-averaged statistics. The tradeoff between accuracy and cost must be weighed before choosing one method over the other.

The separation of turbulent length scales required for LES is obtained by using a spatial filter rather than the RANS temporal filter. This filter has the mathematical form

\[
\phi(x, t) \equiv \int_{-\infty}^{+\infty} \phi(x', t) G(x' - x) \, dx', \tag{3.85}
\]
which is a convolution integral over physical space \( x \) with the spatially-varying filter function \( G \). The filter function has the normalization property \( \int_{-\infty}^{+\infty} G(x) \, dx = 1 \), and it has a characteristic length scale \( \Delta \) so that it filters out turbulent length scales smaller than this size. In the present formulation, a simple “box filter” is used for the filter function,

\[
G(x' - x) = \begin{cases} 
1/V & : (x' - x) \in V \\
0 & : \text{otherwise}
\end{cases},
\]

where \( V \) is the volume of control volume \( V \) whose central node is located at \( x \). This is essentially an unweighted average over the control volume. The length scale of this filter is approximated by \( \Delta = V^{\frac{1}{3}} \). This is typically called the grid filter, as it filters out scales smaller than the computational grid size.

Similar to the RANS temporal filter, a variable can be represented in terms of its filtered and subgrid fluctuating components as

\[
\phi = \bar{\phi} + \phi'.
\]

For most forms of the filter function \( G(x) \), repeated applications of the grid filter to a variable do not yield the same result. In other words, \( \bar{\phi} \neq \phi \) and therefore \( \bar{\phi}' \neq 0 \), unlike with the RANS temporal averages.

As with the RANS formulation, modeling is much simplified in the presence of large density variations if a Favre-filtered approach is used. A Favre-filtered variable \( \tilde{\phi} \) is defined as

\[
\tilde{\phi} = \frac{\rho \phi}{\bar{\rho}}
\]

and a variable can be decomposed in terms of its Favre-filtered and subgrid fluctuating component as

\[
\phi = \tilde{\phi} + \phi''.
\]

Again, note that the useful identities for the Favre-filtered RANS variables do not apply, so that \( \bar{\tilde{\phi}} \neq \tilde{\phi} \) and \( \bar{\phi''} \neq 0 \). The Favre-filtered approach is used for all LES models in Nalu.

### 3.8.1 Standard Smagorinsky LES Model

The standard Smagorinsky LES closure model approximates the subgrid turbulent eddy viscosity using a mixing length-type model, where the LES grid filter size \( \Delta \) provides a natural length scale. The subgrid eddy viscosity is modeled simply as (Smagorinsky)

\[
\mu_t = \rho \left( C_s \Delta \right)^2 |\tilde{S}|,
\]

(3.86)

The constant coefficient \( C_s \) typically varies between 0.1 and 0.24 and should be carefully tuned to match the problem being solved (Rogallo and Moin, [RM84]). The default value of 0.17 is assigned in the code base.

Although this model is desirable due to its simplicity and efficiency, care should be taken in its application. It is known to predict subgrid turbulent eddy viscosity proportional to the shear rate in the flow, independent of the local turbulence intensity. Non-zero subgrid turbulent eddy viscosity is even predicted in completely laminar regions of the flow, sometimes even preventing a natural transition to turbulence. The model also does not asymptotically replicate near wall behavior without either dampening or a dynamic procedure.

### 3.8.2 Wall Adapting Local Eddy-Viscosity, WALE

The WALE model of Ducros el al., [DNP98], properly captures the asymptotic behavior for flows that are wall bounded. In this model, the turbulent viscosity is given by,

\[
\mu_t = \rho \left( C_w \Delta \right)^2 \frac{(S_{ij} S_{ij})^{3/2}}{(S_{ij} S_{ij})^{5/2} + (S_{ij} S_{ij})^{5/4}},
\]

(3.87)
with the constant $C_w$ of 0.325 and a standard filter, $\Delta$ related to the volume, $V^{1/3}$. The rate of strain tensor is defined as,

$$S_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$  \hspace{1cm} (3.88)

while $S_{ij}^d$ is,

$$S_{ij}^d = \frac{1}{2} \left( g_{ij}^2 + g_{ji}^2 \right) - \frac{1}{3} \delta_{ij} g_{kk}^2.$$  \hspace{1cm} (3.89)

Finally, the velocity gradient squared terms are

$$g_{ij}^2 = \frac{\partial u_i}{\partial x_k} \frac{\partial u_k}{\partial x_j}$$  \hspace{1cm} (3.90)

and

$$g_{ji}^2 = \frac{\partial u_j}{\partial x_k} \frac{\partial u_k}{\partial x_i}.$$  \hspace{1cm} (3.91)

### 3.8.3 One Equation $k^{sgs}$

See $k^{sgs}$ PDE section.

### 3.8.4 SST RANS Model

As noted, Nalu does support a SST RANS-based model (the reader is referred to the SST equation set description).

### 3.8.5 Wall Models

Flows are either expected to be fully resolved or, alternatively, under-resolved where wall functions are used. A classic law of the wall has been implemented in Nalu. Wall models to handle adverse pressure gradients are planned. For more information of the form of wall models, please refer to the boundary condition section of this manual.

### 3.9 Supported Boundary Conditions

#### 3.9.1 Inflow Boundary Condition

**Continuity**

Continuity uses a flux boundary condition with the incoming mass flow rate based on the user specified values for velocity,

$$\dot{m}_c = \rho^{spec} u_j^{spec} A_j.$$  

As this is a vertex-based code, at inflow and Dirichlet wall boundary locations, the continuity equation uses the specified velocity within the inflow boundary condition block.
Momentum, Mixture Fraction, Enthalpy, Species, \(k_{sgs}, k\) and \(\omega\)

These degree-of-freedoms (DOFs) each use a Dirichlet value with the specified user value. For all Dirichlet values, the row is zeroed with a unity placed on the diagonal. The residual is zeroed and set to the difference between the current value and user specified value.

### 3.9.2 Wall Boundary Conditions

**Continuity**

Continuity uses a no-op.

**Momentum**

When resolving the boundary layer, Momentum again uses a no-slip Dirichlet condition, e.g., \(u_i = 0\).

In the case of a wall model, a classic wall function is applied. The wall shear stress enters the discretization of the momentum equations by the term

\[
\int \tau_{ij} n_j dS = -F_{w1}.
\]  

Wall functions are used to prescribe the value of the wall shear stress rather than resolving the boundary layer within the near-wall domain. The fundamental momentum law of the wall formulation, assuming fully-developed turbulent flow near a no-slip wall, can be written as,

\[
u^+ = \frac{u_\parallel}{u_\tau} = \frac{1}{\kappa} \ln \left( E y^+ \right),
\]  

where \(u^+\) is defined by the near-wall parallel velocity, \(u_\parallel\), normalized by the wall friction velocity, \(u_\tau\). The wall friction velocity is related to the turbulent kinetic energy by,

\[
u_\tau = C_{\kappa}^{1/4} k^{1/2}.
\]  

by assuming that the production and dissipation of turbulence is in local equilibrium. The wall friction velocity is also computed given the density and wall shear stress,

\[
u_\tau = \left( \frac{\tau_w}{\rho} \right)^{0.5}.
\]  

The normalized perpendicular distance from the point in question to the wall, \(y^+\), is defined as the following:

\[
y^+ = \frac{\rho Y_p}{\mu} \left( \frac{\tau_w}{\rho} \right)^{1/2} = \frac{\rho Y_p u_\tau}{\mu}.
\]  

The classical law of the wall is as follows:

\[
u^+ = \frac{1}{\kappa} \ln(y^+) + C,
\]  

where \(\kappa\) is the von Karman constant and \(C\) is the dimensionless integration constant that varies based on authorship and surface roughness. The above expression can be re-written as,

\[
u^+ = \frac{1}{\kappa} \ln(y^+) + \frac{1}{\kappa} \ln(\exp(\kappa C)),
\]
or simplified to the following expression:

\[ u^+ = \frac{1}{\kappa} \left( \ln(y^+) + \ln(\exp(\kappa C)) \right) \]
\[ = \frac{1}{\kappa} \ln(Ey^+). \]  

(3.98)

In the above equation, \( E \), is referred to in the text as the dimensionless wall roughness parameter and is described by,

\[ E = \exp(\kappa C). \]  

(3.99)

In Nalu, \( \kappa \) is set to the value of 0.42 while the value of \( E \) is set to 9.8 for smooth walls (White suggests values of \( \kappa = 0.41 \) and \( E = 7.768 \)). The viscous sublayer is assumed to extend to a value of \( y^+ = 11.63 \).

The wall shear stress, \( \tau_w \), can be expressed as,

\[ \tau_w = \rho u_r^2 = \rho u_r u^+ = \frac{\rho \kappa u_r}{\ln(Ey^+)} u^+ = \lambda_w u^+, \]  

(3.100)

where \( \lambda_w \) is simply the grouping of the factors from the law of the wall. For values of \( y^+ \) less than 11.63, the wall shear stress is given by,

\[ \tau_w = \frac{u^+}{\gamma_p}. \]  

(3.101)

The force imparted by the wall, for the \( i_{th} \) component of velocity, can be written as,

\[ F_{w,i} = -\lambda_w A_w u_i |u^+|, \]  

(3.102)

where \( A_w \) is the total area over which the shear stress acts.

The use of a general, non-orthogonal mesh adds a slight complexity to specifying the force imparted on the fluid by the wall. As shown in Equation (3.102), the velocity component parallel to the wall must be determined. Use of the unit normal vector, \( n_j \), provides an easy way to determine the parallel velocity component by the following standard vector projection:

\[ \Pi_{ij} = [\delta_{ij} - n_i n_j]. \]  

(3.103)

Carrying out the projection of a general velocity, which is not necessarily parallel to the wall, yields the velocity vector parallel to the wall,

\[ u_i |u^+| = \Pi_{ij} u_j = u_i \left( 1 - n_i^2 \right) - \sum_{j=1;j \neq j}^{n} u_j n_i n_j. \]  

(3.104)

Note that the component that acts on the particular \( i_{th} \) component of velocity,

\[ -\lambda_w A_w (1 - n_i n_i) u_i |u^+|, \]  

(3.105)

provides a form that can be potentially treated implicitly; i.e., in a way to augment the diagonal dominance of the central coefficient of the \( i_{th} \) component of velocity. The use of residual form adds a slight complexity to this implicit formulation only in that appropriate right-hand-side source terms must be added.

**Mixture Fraction**

If a value is specified for each quantity within the wall boundary condition block, a Dirichlet condition is applied. If no values are specified, a zero flux condition is applied.

3.9. Supported Boundary Conditions
Enthalpy

If the temperature is specified within the wall boundary condition block, a Dirichlet condition is always specified. Wall functions for enthalpy transport have not yet been implemented.

The simulation tool supports multi-physics coupling via conjugate heat transfer and radiative heat transfer. Coupling parameters required for the thermal boundary condition are post processed by the fluids or PMR Realm. For conjugate and radiative coupling, the thermal solve provides the surface temperature. From the surface temperature, a wall enthalpy is computed and used.

Thermal Heat Conduction

If a temperature is specified in the wall block, and the surface is not an interface condition, then a Dirichlet approach is used. If conjugate heat transfer is included, then the boundary condition applied is as follows,

$$-\kappa \frac{\partial T}{\partial x_j} n_j dS = h(T - T^o) dS,$$

where $h$ is the heat transfer coefficient and $T^o$ is the reference temperature. The details of how these quantities are computed are currently omitted in this manual. In general, the quantities are post processed from the fluids temperature field. A surface-based gradient is computed on the boundary face. Nodes on the face augment a heat transfer coefficient field while nodes off the face contribute to a reference temperature.

For radiative heat transfer, the boundary condition applied is as follows:

$$-\kappa \frac{\partial T}{\partial x_j} n_j dS = \epsilon (\sigma T^4 - H) dS,$$

where $H$ is again the irradiation provided by the RTE solve.

If no temperature is specified or an adiabatic line command is used, a zero flux condition is applied.

Species

If a value is specified for each quantity within the wall boundary condition block, a Dirichlet condition is applied. If no values are specified, a zero flux condition is applied.

3.9.3 Turbulent Kinetic Energy, $k_{sgs}$ LES model

When the boundary layer is assumed to be resolved, the natural boundary condition is a Dirichlet value of zero, $k_{sgs} = 0$.

When the wall model is used, a standard wall function approach is used with the assumption of equal production and dissipation.

The turbulent kinetic energy production term is consistent with the law of the wall formulation and can be expressed as,

$$P_{kw} = \tau_w \frac{\partial u\|}{\partial y}.$$  \hspace{1cm} (3.106)

The parallel velocity, $u\|$, can be related to the wall shear stress by,

$$\tau_w \frac{u^+}{y^+} = \mu \frac{u\|}{y_p}.$$  \hspace{1cm} (3.107)
Taking the derivative of both sides of Equation (3.107), and substituting this relationship into Equation (3.106) yields,

\[ P_{kw} = \frac{\tau_w^2}{\mu} \frac{\partial u^+}{\partial y^+}. \]  

(3.108)

Applying the derivative of the law of the wall formulation, Equation (3.93), provides the functional form of \( \frac{\partial u^+}{\partial y^+} \),

\[ \frac{\partial u^+}{\partial y^+} = \frac{\partial}{\partial y^+} \left[ \frac{1}{k} \ln \left( Ey^+ \right) \right] = \frac{1}{k y^+}. \]  

(3.109)

Substituting Equation (3.93) within Equation (3.108) yields a commonly used form of the near wall production term,

\[ P_{kw} = \frac{\tau_w^2}{\rho \mu u_T} \left( 1 \right) \]  

(3.110)

Assuming local equilibrium, \( P_k = \rho \epsilon \), and using Equation (3.110) and Equation (3.94) provides the form of wall shear stress is given by,

\[ \tau_w = \rho C_{1/2}^{1/2} \]  

(3.111)

Under the above assumptions, the near wall value for turbulent kinetic energy, in the absence of convection, diffusion, or accumulation is given by,

\[ k = \frac{u^2}{C_{1/2}^{1/2}}. \]  

(3.112)

This expression for turbulent kinetic energy is evaluated at the boundary faces of the exposed wall boundaries and is area-assembled to the nodal value for use in a Dirichlet condition.

**Turbulent Kinetic Energy and Specific Dissipation SST Low Reynolds Number Boundary conditions**

For the turbulent kinetic energy equation, the wall boundary conditions follow that described for the \( k_{sgs} \) model, i.e., \( k = 0 \).

A Dirichlet condition is also used on \( \omega \). For this boundary condition, the \( \omega \) equation depends only on the near-wall grid spacing. The boundary condition is given by,

\[ \omega = \frac{6 \nu}{\beta_1 y^2}, \]  

which is valid for \( y^+ < 3 \).

**Turbulent Kinetic Energy and Specific Dissipation SST High Reynolds Number Boundary conditions**

The high Reynolds approach uses the law of the wall assumption and also follows the description provided in the wall modeling section with only a slight modification in constant syntax,

\[ k = \frac{u^2}{\sqrt{\beta^2}}. \]  

(3.113)

In the case of \( \omega \), an analytic expression is known in the log layer:

\[ \omega = \frac{u^2}{\sqrt{\beta^2} k y}, \]  

which is independent of \( k \). Because all these expressions require \( y \) to be in the log layer, they should absolutely not be used unless it can be guaranteed that \( y^+ > 10 \), and \( y^+ > 25 \) is preferable. Automatic blending is not currently supported.
Solid Stress

The boundary conditions applied are either force provided by a static pressure,

\[ F^n_i = \int \bar{P} n_i dS, \quad (3.114) \]

or a Dirichlet condition, i.e., \( u_i = u_i^{spec} \), on the displacement field. Above, \( F^n_i \) is the force for component \( i \) due to a prescribed [static] pressure.

Intensity

The boundary condition for each intensity assumes a grey, diffuse surface as,

\[ I(s) = \frac{1}{\pi} \left[ \tau \sigma T^4 + \epsilon \sigma T^4 w + (1 - \epsilon - \tau) K \right]. \quad (3.115) \]

3.9.4 Open Boundary Condition

Open boundary conditions require far more care. In general, open bcs are assembled by iterating faces and the boundary integration points on the exposed face. The parent element is also required since oftentimes gradients are used (for momentum). For an open boundary condition the flow can either leave or enter the domain depending on what the computed mass flow rate at the exposed boundary integration point is.

Continuity

For continuity, the boundary mass flow rate must also be computed. This value is stored at all integration points and used for the other equations that require advection. Ideally, this expression will be a function of the specified open boundary pressure and the local and projected pressure gradient to allow for complete mass continuity.

For the edge-based scheme, the same formula is used for the pressure-stabilized mass flow rate. However, the local pressure gradient for each boundary contribution is based on the difference between the interior integration point and the user-specified pressure that takes on the boundary value. The interior integration point, which serves as the interior stencil pressure value, is determined by linear interpolation between the boundary and opposing interior node. In this formulation, a correction for non-orthogonality between the edge- and exposed area normals is included. Such non-orthogonality can be found naturally in Tet4, Wedge6, and Pyramid5 elements.

For CVFEM, the following expression, which is very similar to the interior expression, is used at open boundaries,

\[ \dot{m} = \left( \rho \ddot{u}_i + \tau G_i \bar{P} - \tau \frac{\partial \bar{P}}{\partial x_i} \right) n_i dS + \gamma \frac{\tau}{L} (p_{hip} - p_{bc}) dS. \]

The above expression includes an extra penalty term that is based on the difference between the degree-of-freedom pressure and specified pressure boundary value that are both evaluated at the boundary integration point. This expression is based on recent energy stable approaches deduced for Laplace systems; the value of \( \gamma \) is taken to be 2. In the above expression, the projected nodal gradient uses the specified pressure value while the local pressure gradient is based on the current values of pressure at all nodes within the element that holds the exposed boundary face. The scheme has been shown to be design-order (see upcoming Domino et al., 2019, Comp. & Fluids).

Momentum

For momentum, the normal component of the stress is subtracted out we subtract out the normal component of the stress. The normal stress component for component \( i \) can be written as \( F^n_i n_k n_i \). The tangential component for
component \( i \) is simply, \( F^i - F_k n_k n_i \). As an example, the tangential viscous stress for component \( x \) is,

\[
F_x^T = F_x - (F_x n_x + F_y n_y)n_x,
\]

which can be written in general component form as,

\[
F_i^T = F_i(1 - n_i n_i) - \sum_{i\neq j} F_j n_i n_j.
\]

Finally, the normal stress contribution is applied based on the user specified pressure,

\[
F^N_i = P_{Spec} A_i.
\]

For CVFEM, the face gradient operators are used for the thermal stress terms. For EBVC discretization, from the boundary integration point, the nearest node (the “Right” state) is used as well as the opposing node (the “Left” state). The nearest node and opposing node are used to compute gradients required for any derivatives. This equation follows the standard gradient description in the diffusion section with non-orthogonal corrections used. In this formulation, the area vector is taken to be the exposed area vector. Non-orthogonal terms are noted when the area vector and edge vector are not aligned.

For advection, if the flow is leaving the domain, we simply advect the nearest nodal value to the boundary integration point. If the flow is coming into the domain, we simply confine the flow to be normal to the open boundary integration point area vector. The value entrained can be the nearest node or an upstream velocity value defined by the edge midpoint value.

**Mixture Fraction, Enthalpy, Species, \( k_{sgs} \), \( k \) and \( \omega \)**

Open boundary conditions assume a zero normal gradient. When flow is entering the domain, the far-field user supplied value is used. Far field values are used for property evaluations. When flow is leaving the domain, the flow is advected out consistent with the choice of interior advection operator.

### 3.9.5 Symmetry Boundary Condition

**Continuity, Mixture Fraction, Enthalpy, Species, \( k_{sgs} \), \( k \) and \( \omega \)**

Zero diffusion is applied at the symmetry bc.

**Momentum**

A symmetry boundary is one that is described by removal of the tangential stress. Therefore, only the normal component of the stress is applied:

\[
F^a_x = (F_x n_x + F_y n_y)n_x,
\]

which can be written in general component form as,

\[
F^a_i = F_j n_j n_i.
\]
Specified Boundary-Normal Temperature Gradient Option

The standard symmetry boundary condition applies zero diffusion at the boundary for scalar quantities, which effectively results in those scalars having a zero boundary-normal gradient. There are situations in which the user may desire a finite boundary-normal gradient of temperature. Here, we apply symmetry conditions to this upper boundary for momentum, but we specify the boundary-normal temperature gradient on this boundary to match the desired gradient.

This is an option in the symmetry boundary condition specification, which appears in the input file as:

```
- symmetry_boundary_condition: bc_upper
  target_name: upper
  symmetry_user_data:
    normal_temperature_gradient: -0.003
```

In this example, the temperature gradient normal to the symmetry boundary is set to -0.003 K/m, where the boundary-normal direction is pointed into the domain.

Nalu does not solve a transport equation for temperature directly, but rather it solves one for enthalpy. Therefore, the boundary-normal temperature gradient condition is applied internally in the code through application of a compatible heat flux,

\[ q_n = -\kappa_{eff} c_p \frac{\partial T}{\partial n} \]

where \( q_n \) is the heat flux at the boundary, \( \kappa_{eff} \) is the effective thermal diffusivity (the molecular and turbulent parts), \( c_p \) is the specific heat, and \( \frac{\partial T}{\partial n} \) is the boundary-normal temperature gradient.

3.9.6 Periodic Boundary Condition

A parallel multiple-periodic boundary condition is supported. Mappings are created between master/slave surface node pairs. The node pairs are obtained from a parallel search and are expected to be unique. The node pairs are used to map the slave global id to that of the master. This allows the linear system to include matrix rows for only a subset of the overall set of nodes. Moreover, a periodic assembly for assembled quantities is managed via:

\[ m+ = s \]
\[ s = m \]

where \( m \) and \( s \) are master/slave nodes, respectively. For each parallel assembled quantity, e.g., dual volume, turbulence quantities, etc., this procedure is used. Periodic boxes and periodic couette and channel flow have been simulated in this code base. Two forms of parallel searches exist and are supported (one through the Boost TPL and another through the STK Search module).

3.9.7 Non-conformal Boundary Condition

A surface-based approach based on a DG method has been discussed in the 2010 CTR summer proceedings by Domino, [Dom10]. Both the edge- and element-based formulation currently exists in the code base using the CVFEM and EBVC approaches.

Consider two domains, \( A \) and \( B \), which have a common interface, \( \Gamma_{AB} \), and a set of interfaces not in common, \( \Gamma \setminus \Gamma_{AB} \) (see Figure 3.6), and assume that the solution of the time-dependent advection/diffusion equation is to be solved in both domains. Each domain has a set of outwardly pointing normals. In this cartoon, the interface is well resolved, although in practice this may not be the case.

An interior penalty approach is constructed at each integration point at the exposed surface set. The numerical flux for a general scalar \( \phi \) is constructed at the current integration point which is based on the current (\( A \)) and opposing (\( B \)) elemental contributions,

\[
\int \hat{Q}^A dS = \int \left[ \left( \frac{q_{nA}^A - q_{nB}^B}{2} \right) + \lambda^A (\phi^A - \phi^B) \right] dS^A + \hat{n}^A \left( \frac{\phi^A + \phi^B}{2} \right) + \eta \left| \hat{n}^A \right| (\phi^A - \phi^B),
\]

(3.116)
where $q^A_j$ and $q^B_j$ are the diffusive fluxes computed using the current and opposing elements and normals are outward facing. The penalty coefficient $\lambda^A$ contains the diffusive contributions averaged over the two elements,

$$\lambda^A = \frac{(\Gamma^A / L^A + \Gamma^B / L^B)}{2}.$$ (3.117)

Above, $\Gamma^k$ is the diffusive flux coefficient evaluated at current and opposing element location, respectively, and $L^k$ is an elemental length scale normal to the surface (again for current and opposing locations, $A$ and $B$). When upwinding is activated, the value of $\eta$ is unity.

As written in Equation (3.116), the default convection and diffusion term is a Galerkin approach, i.e., equally averaged between the current and opposing face. The standard advection term is given by,

$$\int \rho \hat{u}_j \phi n_j dS.$$. (3.118)

For surface $A$, the form is as follows:

$$\int \rho \hat{u}_j^A \phi n_j^A dS^A = \dot{m}^A \frac{\phi^A + \phi^B}{2},$$ (3.119)

with the nonconformal mass flow rate given by,

$$\dot{m}^A = \left[ \frac{(\rho u_j^A + \gamma(\tau G_j^A p - \tau \frac{\partial \phi^A}{\partial x_j})) n_j^A - (\rho u_j^B + \gamma(\tau G_j^B p - \tau \frac{\partial \phi^B}{\partial x_j})) n_j^B}{2} + \lambda^A (p^A - p^B) \right] dS^A.$$ (3.120)

In the above set of expressions, the consistent definition of $\hat{u}_j$, i.e., the convecting velocity including possible pressure stabilization terms, is retained.

As with the interior advection scheme, the mass flow rate involves pressure stabilization terms. The value of $\gamma$ defines whether or not the full pressure stabilization terms are included in the mass flow rate expression. Equation (3.120) also forms the continuity nonconformal boundary contribution.

With the substitution of $\eta$ to be unity, the effective convective term is as follows:

$$\int \rho \hat{u}_j \phi n_j^A dS^A = \frac{(\dot{m}^A + |\dot{m}^A|) \phi^A + (\dot{m}^A - |\dot{m}^A|) \phi^B}{2}.$$ (3.121)

Note that this form reduces to a standard upwind operator.
Since this algorithm is a dual pass approach, a numerical flux can be written for the integration point on block $B$,

$$
\int \dot{Q}^B dS = \int \left( \frac{q^B_j n_j^B - q^A_j n_j^A}{2} + \lambda^B (\phi^B - \phi^A) \right) dS^A + \dot{m}^B \left( \frac{\phi^B + \phi^A}{2} + \eta \frac{\dot{m}^B}{2} (\phi^B - \phi^A) \right).
$$

(3.122)

As with Equation (3.122), $\dot{m}^B$ (see Equation (3.123)) is of similar form to $\dot{m}^A$,

$$
\dot{m}^B = \left[ \frac{(\rho u_j^B + \gamma (\tau G_j^B p - \tau p_j^B \frac{\partial u_j^B}{\partial x_j})) n_j^B - (\rho u_j^A + \gamma (\tau G_j^A p - \tau p_j^A \frac{\partial u_j^A}{\partial x_j})) n_j^A}{2} + \lambda^A (p^B - p^A) \right] dS^B.
$$

(3.123)

For low-order meshes with curved surface, faceting will occur. In this case, the outward facing normals may not be (sign)-unity factors of each other. In this case, it may be advantageous to define the opposing outward normal as, $n_j^B = -n_j^A$.

Domino, [Dom10] provided an overview of a FEM fluids implementation. In such a formulation, the interior penalty term appears, i.e.,

$$
\int_{\Gamma_{AB}} \frac{\partial w^A}{\partial x_j} n_j^A \lambda (\phi^A - \phi^B) d\Gamma,
$$

and

$$
\int_{\Gamma_{BA}} \frac{\partial w^B}{\partial x_j} n_j^B \lambda (\phi^B - \phi^A) d\Gamma.
$$

Although the sign of this term is often debated in the literature, the above set of expressions acts to increase penalty term stencil to include the full element contribution. As the CVFEM uses a piecewise-constant test function, this term is currently neglected.

Average fluxes are computed based on the current and opposing integration point locations. The appropriate DG terms are assembled as boundary conditions first with block $A$ integration points as current (integration points for block $B$ are opposing) and then with block $B$ integration points as current (surfaces for block $A$ are, therefore, opposing). Figure Fig. 3.6 graphically demonstrates the procedure in which integration point values of the flux and penalty term are computed on the block $A$ surface and at the projected location of block $B$.

A parallel search is conducted to project the current integration point location to the opposing element exposed face. The search, therefore, provides the isoparametric coordinates on the opposing element. Elemental shape functions and shape function derivatives are used to construct the numerical flux for both the edge- and element-based scheme. The location of the Gauss points on the current element are either the Gauss Labatto or Gauss Legendre locations (input file specification). For each equation (momentum, continuity, enthalpy, etc.) the numerical flux is computed at each exposed non-conformal surface.

As noted, for most equations other than continuity and heat condition, the numerical flux includes advection and diffusion contributions. The diffusive contribution is easily provided using elemental shape function derivatives at the current and opposing surface.

Above, special care is taken for the value of the mass flow rate at the non-conformal interface. Also, note that the above written form does not upwind the advective flux, although the code allows for an upwinded approach. In general, the advective term contains contributions from both elements identified at the interface, specifically.

The penalty coefficient for the mass flow rate at the non-conformal boundary points is again a function of the blended inverse length scale at the current and opposing element surface location. The form of the mass flow rate above provides the continuity contribution and the form of the mass flow rate used in the scalar non-conformal flux contribution.

The full connectivity for element integration and opposing elements is within the linear system. As such, for sliding mesh configurations, the linear system connectivity graph changes each time step. Recent prototyping of the dG-based and the overset scheme has allowed this method to be used across both disparate low-order topologies (see Figure Fig. 3.8 and Figure Fig. 3.9).
Fig. 3.7: Description of the numerical flux calculation for the DG algorithm. The value of fluxes and penalty values on the current block ($A$) and the opposing block ($B$) are used for the calculation of numerical fluxes. $\tilde{\phi}$ represents the projected value.

Fig. 3.8: A low-order and high-order block interface (P=1 quad4 and P=2 quad9) for a MMS temperature solution. In this image, the inset image is a close-up of the nodal IDs near the interface that highlights the quad4 and quad9 interface.
3.10 Overset

Nalu supports simulations using an overset mesh methodology to model complex geometries. Currently the codebase utilizes a native STK based overset grid assembly algorithm for all overset assembly. STK searches are performed to remove elements which intersect bounding shapes. Three shapes are supported:

1. Axis-aligned bounding boxes (AABB),
2. Oriented bounding boxes (OBB), and
3. Oriented cylinders (OC).

AABB directly uses efficient STK search routines to remove elements which have an AABB that intersects the overset mesh’s AABB. OBB instead removes elements which have nodes within an oriented bounding box that follows an overset block’s movement. OC behaves similarly where now a cylindrical volume is removed that follows the block’s motion. The oriented cutting shapes provide more consistent overlap for moving cases and are generally suggested over the AABB strategy for such cases.

3.10.1 Overset Grid Assembly using Native STK Search

The overset descriptions begins with the basic background mesh (block 1) and overset mesh (block 2) depicted in Figure Fig. 3.10. Also shown in this figure is the reduction outer surface of block 2 (light blue). Elements within this reduced overset block will be determined by a parallel search. The collection of elements within this bounding box will be skinned to form a surface on which constraint nodes are placed. Elements within this volume are set in a new internally managed inactive block. These mesh entities are fully removed from the overall matrix for each dof. Elements within this volume are provided a masking integer element varibale of unity to select out of the visualization tool. Therefore, constraint nodes live at the external boundary of block 2 and along the reduced surface. The parallel search provides the mapping of constraint node and owning element from which the state can be constructed.

After the full search and overset initialization, this simple example yields the original block 1 and 2, the newly created inactive block 3, the original surface of the overset mesh and the new skinned surface (101) of the inactive block (Figure Fig. 3.11).
Fig. 3.10: Two-block use case describing background mesh (block 1) and overset mesh (block 2).

Fig. 3.11: Three-block and two surface, post over set initialization.
A simple heat conduction example is provided in Figure Fig. 3.12 where the circular boundary is set at a temperature of 500 with all external boundaries set to adiabatic.

As noted before, every constraint node lies within an owning element. Sufficient overlap is required to make the system well posed. A fully implicit procedure is provided by writing the constraint node value as a linear constraint of the owning element (Figure Fig. 3.13).

For completeness, the constraint equation for any dof $\phi^o$ is simply,

$$\phi^o - \sum N_k \phi_k = 0.$$  \hspace{1cm} (3.124)

As noted, full sensitivities are provided in the linear system by constructing a row entry with the columns of the nodes within the owning element and the constraint node itself.

Finally, a mixed hex/tet mesh configuration example (overset mesh is tet while background is hex) is provided in Figure Fig. 3.14.

### 3.11 Property Evaluations

Property specification is provided in the material model section of the input file. Unity Lewis number assumptions for diffusive flux coefficients for mass fraction and enthalpy are assumed.

#### 3.11.1 Density

At present, property evaluation for density is given by constant, single mixture fraction-based, HDF5 tables, or ideal gas. For ideal gas, we support a non-isothermal, non-uniform and even an acoustically compressible form.

#### 3.11.2 Viscosity

Property evaluation for viscosity is given by constant, single mixture fraction-based, simple tables or Sutherland’s three coefficient as a function of temperature. When mixtures are used, either by reference or species transport, only a mass fraction-weighed approach is used.
Fig. 3.13: Constraint nodes for background and overset mesh for which a fully implicit constraint equation is written.
Fig. 3.14: Flow past a three-dimensional sphere using a hybrid topology (hex/tet) mesh configuration.
3.11.3 Specific Heat

Property evaluation for specific heat is either constant of two-band standard NASA polynomials; again species composition weighting are used (either transported or reference).

3.11.4 Lame Properties

Lame constants are either of type constant or for use in mesh motion/smoothing geometric whereby the values are inversely proportional to the dual volume.

3.12 Coupling Approach

The classic low Mach implementation uses an incremental approximate pressure projection scheme in which nonlinear convergence is obtained using outer Picard loops. Recently a full study on coupling approaches has been conducted using ASC Algorithm funds. In this project, coupling methods ranging from fully implicit, fully coupled equal order pressure/velocity interpolation with pressure stabilization to explicit advection/diffusion pressure projection schemes. A brief summary of the results follows.

Specifically, five algorithms were considered and are as follows:

1. A monolithic scheme in which advection and diffusion are implicit using full analytical sensitivities,
2. Monolithic momentum solve with implicit advection/diffusion in the context of a fourth order stabilized incremental pressure projection scheme,
3. Monolithic momentum solve with explicit advection; implicit diffusion in the context of a fourth order stabilized incremental pressure projection scheme,
4. Segregated momentum solve with implicit advection/diffusion in the context of a fourth order stabilized incremental pressure projection scheme, and
5. Explicit momentum advection/diffusion predictor/corrector scheme in the context of a second order stabilized pressure-free approximate projection scheme.

Each of the above algorithms has been run in the context of a transient uniform flow low Mach flow. The emphasis of this project is transient flows. As such, the numbers below are to be cast in this context. If steady flows are desired, conclusions may be different. The slowdown of each implementation is relative to the core low Mach algorithm, i.e., algorithm (4) above. Numbers less than unity represent a speed-up whereas numbers greater than unity represent a slow down: 1) 3.4x, 2) 1.2x, 3) 0.6x, 4) 1.0x, 5) 0.7x.

The above runs were made using a time step that corresponded to a CFL of slightly less than unity. In this particular flow, a transitionally turbulent open jet, the diffusion time scale stability limit was not a factor. In other words, there existed no detailed boundary layer at the wall bounded flow at the ground plane. Results for a Reynolds number of 45000 back step also are similar to the above jet results.

In general, although a mixture of implicit diffusion and explicit advection seem to be the winning combination, this scheme is very sensitive to time step and must be used by an educated user. In general, the conclusions are, thus far, that the standard segregated pressure projection scheme is preferred.

The algorithm implemented in Nalu is a fourth order approximate projection scheme with monolithic momentum coupling. Evaluation of a predictor/corrector approach for rerating flow is anticipated in the late FY15 time frame.

3.12.1 Errors due to Splitting and Stabilization

As noted in many of our papers, the error in the above method can be written in block form (let’s relax the variable density nuance - or simple fold these extra terms into our operators). Here we specifically partition error into both
splitting (the pressure projection aspect of the alg that factorizes the fully coupled system) and pressure stabilization. Note that when we run fully coupled simulation with the same pressure stabilization algorithm, the answers converge to the same result.

Below, also forgive the specific definitions of \( \tau \). In general, they represent a choice of projection and stabilization time scales. Finally, the Laplace operator, e.g., \( L_2 \), have the \( \tau \)'s built into them.

\[
\begin{bmatrix}
A & G \\
D & 0
\end{bmatrix}
\begin{bmatrix}
u^{n+1} \\
p^{n+1}
\end{bmatrix} =
\begin{bmatrix}
f \\
0
\end{bmatrix} +
\begin{bmatrix}
(I - \tau A)G(p^{n+1} - p^n) \\
\epsilon(L_i, \tau_i, D, G)
\end{bmatrix}
\]

(3.125)

where the error term that appears for the discrete continuity solve is given by,

\[
\epsilon(L_i, \tau_i, D, G) = (L_1 - D\tau_3 G) - (L_2 - D\tau_2 G)(p^{n+1} - p^n) + (L_2 - D\tau_2 G)p^{n+1}
\]

(3.126)

For the sake of this write-up, let \( L_1 = L_2 \) and \( \tau_2 = \tau_3 \).

### 3.13 Time discretization

Time integrators range from simple backward Euler or a second order three state scheme, BDF2.

A general time discretization approach can be written as,

\[
\int \frac{\partial \rho \phi}{\partial t} dV = \int \frac{(\gamma_1 \rho^{n+1} \phi^{n+1} + \gamma_2 \rho^n \phi^n + \gamma_3 \rho^{n-1} \phi^{n-1})}{\Delta t} dV
\]

where \( \gamma_i \) represent the appropriate factors for either Backward Euler or a three-point BDF2 scheme. In both discretization approaches, the value for density and other dofs are evaluated at the node. As such, the time contribution is a lumped mass scheme with the volume simply the dual volume. The topology over one loops to assemble system is simply the node. Although CVFEM affords the use of a consistent mass matrix, this scheme is not used at present.

### 3.14 Multi-Physics

The equation set required to support the energy sector is already represented as a multiphysics application. However, in some common cases of coupling including conjugate heat transfer and coupling to participating media radiation, an operator split method may be preferred. The general concept is to define multiple Nalu Realms that each own the mesh on which the particular physics is solved. Surface- and volume-based couplings are supported through linear interpolation of the coupling parameters.

A typical CHT application involves the coupling of a thermal response and fluid transport. The coupling occurs between the surface that shares the thermal equation and static enthalpy equation. Moreover, coupling to a PMR solve is a volume-based coupling. Multiple Realms are supported with multiple transfers.

In Nalu, the method to achieve coupling in CHT or RTE coupled systems is through the usage of the STK Transfer module. This allows for linear interpolation between disparate meshes. Advanced conservative transfers are being evaluated, however, are not yet implemented in the code base. In general, the STK Transfer interface allows for this design point.

For FSI, the usage of the transfer module is also expected.

### 3.15 Wind Energy Modeling

See [https://github.com/ExaWind](https://github.com/ExaWind)
3.16 Topological Support

The currently supported elements are as follows: hex, tet, pyramid, wedge, quad, and tri. In general, hybrid meshes are fully supported for the edge- and element-based scheme. Mixed topologies are available at all current boundary conditions.

3.17 Adaptivity

Adaptivity is supported through usage of the Percept module. However, this code base has not yet been deployed to the open sector. As such, ifdef guards are placed within the code base. A variety of choices exist for the manner by which hanging nodes are removed in a vertex-centered code base.

A typical h-adapted patch of elements is shown in Figure Fig. 3.15. The “hanging nodes” do not have control volumes associated with them. Rather, they are constrained to be a linear combination of the two parent edge nodes. There is no element assembly procedure to compute fluxes for the “hanging sub-faces” associated with the hanging nodes that occur along the parent-child element boundary.

Fig. 3.15: Control volume definition on an h-adapted mesh with hanging nodes. (Four-patch of parent elements with refinement in bottom-right element.)

In general, for a vertex-centered scheme, the h-adaptive scheme is driven at the element level. Refinement occurs within the element and the topology of refined elements is the same as the parent element.

Aftosmis [Aft94] describes a vertex-centered finite-volume scheme on unstructured Cartesian meshes. A transitional set of control volumes are formed about the hanging nodes, shown in Figure Fig. 3.16. on unstructured meshes. This approach would require a series of specialized master elements to deal with the different transition possibilities.

Kallinderis [KB89] describes a vertex-centered finite-volume scheme on unstructured quad meshes. Hanging nodes are treated with a constraint condition. The flux construction for a node on a refinement boundary is based on the unrefined parent elements, leading to a non-conservative scheme.
Fig. 3.16: Control volume definition on an h-adapted mesh with transition control volumes about the hanging nodes. (Four-patch of parent elements with refinement in bottom-right element.)
Kallinderis [KV93] also describes a vertex-centered finite-volume scheme on unstructured tetrahedral meshes. Hanging nodes are removed by splitting the elements on the “unrefined” side of the refinement boundary. Mavriplis [Mav00] uses a similar technique, however, extends it to a general set of heterogeneous elements, shown in Figure Fig. 3.17.

![Figure 3.17: Control volume definition on a heterogeneous h-adapted mesh with no hanging nodes. (Four-patch of parent elements with refinement in bottom-right element and splitting in adjacent parent elements.)](image)

The future deployment of Percept will use the procedure of Mavriplis whereby hanging nodes are removed by neighbor topological changes. A variety of error indicators exists and a prototyped error transport equation approach for the one-equation $k_\text{eq}$ model has been tested for classic jet-in-crossflow configurations.

### 3.17.1 Prolongation and Restriction

Nodal variables are interpolated between levels of the h-adapted mesh hierarchy using the traditional prolongation and restriction operators defined over an element. The prolongation operation is used to compute values for new nodes that arise from element sub-division. The parent element shape functions are used to interpolate values from the parent nodes to the sub-divided nodes.

Prolongation and restriction operators for element variables and face variables are required to maintain mass flow rates that satisfy continuity. When adaptivity takes place, a code option to reconstruct the mass flow rates must be used. Whether or not a Poisson system must be created has been explored. More work is required to understand the nuances associated with prolongation, specifically with respect to possible dispersion errors.
3.18 Code Abstractions

The Nalu code base is a C++ code-base that significantly leverages the Sierra Toolkit and Trilinos infrastructure. This section is designed to provide a high level overview of the underlying abstractions that the code base exercises. For more detailed code information, the developer is referred to the Trilinos project (github.com). In the sections that follow, only a high level overview is provided.

The developer might also find useful examples in the NaluUnit github repository as it contains a number of specialized implementations that are very small in nature. In fact, the Nalu code base emerged as a small testbed unit test to evaluate the STK infrastructure. Interestingly, the first “algorithm” implementation was a simple $L_2$ projected nodal gradient. This effort involved reading in a mesh, registering a nodal (vector) field, iterating elements and exposed surfaces to assemble the projected nodal gradient to the nodes of the mesh (in parallel). When evaluating kokkos, this algorithm was also used to learn about the parallel NGP abstraction provided.

3.18.1 Sierra Toolkit Abstractions

Consider a typical mesh that consists of nodes, sides of elements and elements. Such a mesh, when using the Exodus standard, will likely be represented by a collection of “element blocks”, “sidesets” and, possibly, “nodesets”. The definition of the mesh (generated by the user through commercial meshing packages such as pointwise or ICM-CFD) will provide the required spatial definitions of the volume physics and the required boundary conditions.

An element block is a homogeneous collection of elements of the same underlying topology, e.g., HEXAHEDRAL-8. A sideset is a set of exposed element faces on which a boundary condition is to be applied. Finally, a nodeset is a collection of nodes. In general, nodesets are possibly output entities as the code does not exercise enforcing physics or boundary conditions on nodesets. Although Nalu supports an edge-based scheme, an edge, which is an entity connecting two nodes, is not part of the Exodus standard and must be generated within the STK infrastructure. Therefore, a particular discretization choice may require stk::mesh::Entity types of element, face (or side), edge and node.

Once the mesh is read in, a variety of routine operations are generally required. For example, a low-Mach physics equation set may want to be applied to block_1 while inflow, open, symmetry, periodic and wall boundary conditions can be applied to a variety of sidesets. For example, surface_1 might be of an “inflow” type. Therefore, the high level set of requirements on a mesh infrastructure might be to allow one to iterate parts of the mesh and, in the end, assemble a quantity to a nodal or elemental field.

Meta and Bulk Data

Meta and Bulk data are simply STK containers. MetaData is used to extract parts, extract ownership status, determine the side rank, field declaration, etc. BulkData is used to extract buckets, extract upward and downward connectivities and determine node count for a given entity.

Parallel Rules

In STK, elements are locally owned by a single rank. Elements may be ghosted to other parallel ranks through STK custom ghosting. Exposed faces are locally owned by the lower parallel rank. Nodes are also locally owned by the lower parallel rank and can also be shared by all parallel ranks touching them. Edges and internal faces (element:face:element connectivity) have the same rule of locally owned/shared and can also be ghosted. Again, edges and internal faces must be created by existing STK methods should the physics algorithm require them. In Nalu, the choice of element-based or edge-based is determined within the input file.
Connectivity

In an unstructured mesh, connectivity must be built from the mesh and cannot be assumed to follow an assumed “i-j-k” data layout, i.e., structured. In general, one speaks of downward and upward relationships between the underlying entities. For example, if one has a particular element, one might like to extract all of the nodes connected to the element. Likewise, this represents a common operation for faces and edges. Such examples are those in which downward relationships are required. However, one might also have a node and want to extract all of the connected elements to this node (consider some sort of patch recovery algorithm). STK provides the ability to extract such connectivities. In general, full downward and upward connectivities are created.

For example, consider an example in which one has a pointer to an element and wants to extract the nodes of this element. At this point, the developer has not been exposed to abstractions such as buckets, selectors, etc. As such, this is a very high level overview with more details to come in subsequent sections. Therefore, the scope below is to assume that from an element-k of a “bucket”, b[k] (which is a collection of homogeneous RANK-ed entities) we will extract the nodes of this element using the STK bulk data.

```cpp
// extract element from this bucket
stk::mesh::Entity elem = b[k];

// extract node relationship from bulk data
stk::mesh::Entity const * node_rels = bulkData_.begin_nodes(elem);
int num_nodes = bulkData_.num_nodes(elem);

// iterate nodes
for (int ni = 0; ni < num_nodes; ++ni ) {
    stk::mesh::Entity node = node_rels[ni];
    stk::mesh::Entity node = node_rels[ni];

    // set connected nodes
    connected_nodes[ni] = node;

    // gather some data, e.g., density at state Np1,
    // into a local workset pointer to a std::vector
    p_density[ni] = *stk::mesh::field_data(densityNp1, node );
}
```

Parts

As noted before, a `stk::mesh::Part` is simply an abstraction that describes a set of mesh entities. If one has the name of the part from the mesh data base, one may extract the part. Once the part is in hand, one may iterate the underlying set of entities, walk relations, assemble data, etc.

The following example simply extracts a part for each vector of names that lives in the vector `targetNames` and provides this part to all of the underlying entities that have been created for purposes of nodal field registration. Parts of the mesh that are not included within the `targetNames` vector would not be included in the field registration and, as such, if this missing part was used to extract the data, an error would occur.

```cpp
for ( size_t itarget = 0; itarget < targetNames.size(); ++itarget ) {
    stk::mesh::Part *targetPart = metaData_.get_part(targetNames[itarget]);

    // check for a good part
    if (NULL == targetPart) {
        throw std::runtime_error("Trouble with part " + targetNames[itarget]);
    }
    else {
        EquationSystemVector::iterator ii;
        for( ii=equationSystemVector_.begin(); ii!=equationSystemVector_.end(); ++ii )
```
Selectors

In order to arrive at the precise parts of the mesh and entities on which one desires to operate, one needs to “select” what is useful. The STK selector infrastructure provides this.

In the following example, it is desired to obtain a selector that contains all of the parts of interest to a physics algorithm that are locally owned and active.

```cpp
// define the selector; locally owned, the parts I have served up and active
stk::mesh::Selector s_locally_owned_union = metaData_.locally_owned_part()
  & stk::mesh::selectUnion(partVec_)
  & !(realm_.get_inactive_selector());
```

Buckets

Once a selector is defined (as above) an abstraction to provide access to the type of data can be defined. In STK, the mechanism to iterate entities on the mesh is through the `stk::mesh::bucket` interface. A bucket is a homogeneous collection of `stk::mesh::Entity`.

In the below example, the selector is used to define the bucket of entities that are provided to the developer.

```cpp
// given the defined selector, extract the buckets of type "element"
stk::mesh::BucketVector const& elem_buckets
   =.bulkData_.get_buckets( stk::topology::ELEMENT_RANK,
                               s_locally_owned_union );

// loop over the vector of buckets
for ( stk::mesh::BucketVector::const_iterator ib = elem_buckets.begin();
      ib != elem_buckets.end(); ++ib ) {
  stk::mesh::Bucket & b = *ib;
      const stk::mesh::Bucket::size_type length = b.size();

  // extract master element (homogeneous over buckets)
  MasterElement *meSCS = sierra::nalu::get_surface_master_element(b.topology());

  for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) {

    // extract element from this bucket
    stk::mesh::Entity elem = b[k];

    // etc...
  }
}
```

The look-and-feel for nodes, edges, face/sides is the same, e.g.,

- for nodes:

```cpp
// given the defined selector, extract the buckets of type "node"
stk::mesh::BucketVector const& node_buckets
```
= bulkData_.get_buckets( stk::topology::NODE_RANK,
             s_locally_owned_union );
// loop over the vector of buckets

● for edges:

// given the defined selector, extract the buckets of type `edge'
stk::mesh::BucketVector const & edge_buckets
    = bulkData_.get_buckets( stk::topology::EDGE_RANK,
                  s_locally_owned_union );
// loop over the vector of buckets

● for faces/sides:

// given the defined selector, extract the buckets of type `face/side'
stk::mesh::BucketVector const & face_buckets
    = bulkData_.get_buckets( metaData_.side_rank(),
                   s_locally_owned_union );
// loop over the vector of buckets

Field Data Registration

Given a part, we would like to declare the field and put the field on the part of interest. The developer can register fields of type elemental, nodal, face and edge of desired size.

● nodal field registration:

    void
    LowMachEquationSystem::register_nodal_fields(
        stk::mesh::Part *part)
    {
        // how many states? BDF2 requires Np1, N and Nm1
        const int numStates = realm_.number_of_states();

        // declare it
        density_ = &(metaData_.declare_field<double>(stk::topology::NODE_RANK,
                                   "density", numStates));

        // put it on this part
        stk::mesh::put_field_on_mesh(*density_, *part, nullptr);
    }

● edge field registration:

    void
    LowMachEquationSystem::register_edge_fields(
        stk::mesh::Part *part)
    {
        const int nDim = metaData_.spatial_dimension();
        edgeAreaVec_ = &(metaData_.declare_field<double>(stk::topology::EDGE_RANK,
                                   "edge_area_vector"));
        stk::mesh::put_field_on_mesh(*edgeAreaVec_, *part, nDim, nullptr);
    }
stk::io::set_field_output_type(*edgeAreaVec_, stk::io::FieldOutputType::VECTOR_3D);

● side/face field registration:

```cpp
void MomentumEquationSystem::register_wall_bc(
    stk::mesh::Part *part,
    const stk::topology &theTopo,
    const WallBoundaryConditionData &wallBCData)
{
    // Dirichlet or wall function bc
    if (wallFunctionApproach)
    {
        stk::topology::rank_t sideRank
            = static_cast<stk::topology::rank_t>(metaData_.side_rank());
        GenericFieldType *wallFrictionVelocityBip
            = &(metaData_.declare_field<double>(sideRank, "wall_friction_velocity_bip"));
        stk::mesh::put_field_on_mesh(*wallFrictionVelocityBip, *part, numIp, nullptr);
    }
}
```

Field Data Access

Once we have the field registered and put on a part of the mesh, we can extract the field data anytime that we have the entity in hand. In the example below, we extract nodal field data and load a workset field.

To obtain a pointer for a field that was put on a node, edge face/side or element field, the string name used for declaration is used in addition to the field template type,

```cpp
VectorFieldType *velocityRTM
    = metaData_.get_field<double>(stk::topology::NODE_RANK, "velocity");
ScalarFieldType *density
    = metaData_.get_field<double>(stk::topology::NODE_RANK, "density");
VectorFieldType *edgeAreaVec
    = metaData_.get_field<double>(stk::topology::EDGE_RANK, "edge_area_vector");
GenericFieldType *massFlowRate
    = metaData_.get_field<double>(stk::topology::ELEMENT_RANK, "mass_flow_rate_scs");
GenericFieldType *wallFrictionVelocityBip_
    = metaData_.get_field<double>(metaData_.side_rank(), "wall_friction_velocity_bip");
```

State

For fields that require state, the field should have been declared with the proper number of states (see field declaration section). Once the field pointer is in hand, the specific field with state is easily extracted,

```cpp
ScalarFieldType *density
    = metaData_.get_field<double>(stk::topology::NODE_RANK, "density");
densityNml_ = &(density->field_of_state(stk::mesh::StateNM1));
```
densityN_ = &(density->field_of_state(stk::mesh::StateN));
densityNp1_ = &(density->field_of_state(stk::mesh::StateNP1));

With the field pointer already in hand, obtaining the particular data is field the field data method.

- nodal field data access:

```cpp
// gather some data (density at state Np1) into a local workset pointer
p_density[nj] = *stk::mesh::field_data(densityNp1, node);
```

- **edge field data access**: (from an edge bucket loop with the same selector as defined above)

```cpp
stk::mesh::BucketVector const & edge_buckets = bulkData_.get_buckets(stk::topology::EDGE_RANK, s_locally_owned_union);
for ( stk::mesh::BucketVector::const_iterator ib = edge_buckets.begin(); ib != edge_buckets.end(); ++ib ) {
    stk::mesh::Bucket & b = **ib ;
    const stk::mesh::Bucket::size_type length = b.size();

    // pointer to edge area vector and mdot (all of the buckets)
    const double * av = stk::mesh::field_data(*edgeAreaVec_, b);
    const double * mdot = stk::mesh::field_data(*massFlowRate_, b);

    for ( stk::mesh::Bucket::size_type k = 0; k < length; ++k ) {
        // copy edge area vector to a pointer
        for ( int j = 0; j < nDim; ++j )
            p_areaVec[j] = av[k*nDim+j];

        // save off mass flow rate for this edge
        const double tmdot = mdot[k];
    }
}
```

### 3.18.2 High Level Nalu Abstractions

#### Realm

A realm holds a particular physics set, e.g., low-Mach fluids. Realms are coupled loosely through a transfer operation. For example, one might have a turbulent fluids realm, a thermal heat conduction realm and a PMR realm. The realm also holds a BulkData and MetaData since a realm requires fields and parts to solve the desired physics set.

#### EquationSystem

An equation system holds the set of PDEs of interest. As Nalu uses a pressure projection scheme with split PDE systems, the pre-defined systems are, LowMach, MixtureFraction, Enthalpy, TurbKineticEnergy, etc. New monolithic equation system can be easily created and plugged into the set of all equation systems.

In general, the creation of each equation system is of arbitrary order, however, in some cases fields required for MixtureFraction, e.g., mass_flow_rate might have only been registered on the low-Mach equation system. As such, if MixtureFraction is created before LowMachEOS, an error might be noted. This can be easily resolved by cleaning the code base such that each equation system is “autonomous”.

Each equation system has a set of virtual methods expected to be implemented. These include, however, are not limited to registration of nodal fields, edge fields, boundary conditions of fixed type, e.g., wall, inflow, symmetry, etc.
The SIERRA Low Mach Module: Nalu (henceforth referred to as Nalu, developed at Sandia, represents a generalized unstructured, massively parallel, variable density turbulent flow capability designed for energy applications. This code base began as an effort to prototype Sierra Toolkit, [EWS+10], usage along with direct parallel matrix assembly to the Trilinos, [HBH+03], Epetra and Tpetra data structure. However, the simulation tool has evolved as a tool to support a variety of research projects germane to the energy sector including wind aerodynamic prediction and traditional gas-phase combustion applications.

4.1 Introduction

The methodology used to evaluate the accuracy of each proposed scheme will be the method of manufactured solutions. The objective of code verification is to reveal coding mistakes that affect the order of accuracy and to determine if the governing discretized equations are being solved correctly. Quite often, the process of verification reveals algorithmic issues that would otherwise remain unknown.

In practice, a variety of comparison techniques exist for verification. For example, benchmark and code-to-code comparison are not considered rigorous due to the errors that exist in other code solutions, such as from discretization and iteration. Analytic solutions and the method of manufactured solutions remain the most powerful methods for code verification, since they provide a means to obtain quantitative error estimations in space and time.

Roache has made the distinction between code verification and calculation verification, where calculation verification involves grid refinement required for every problem solution to assess the magnitude, not order, of the discretization error. Discretization error, distinguished from modeling and iteration errors, is defined as the difference between the exact solution to the continuum governing equations and the solution to the algebraic systems representation due to discretization of the continuum equations. The order of accuracy can be determined by comparing the discretization error on successively refined grids. Thus, it is desirable to have an exact solution for comparison to determine the discretization errors.

4.2 2D Unsteady Uniform Property: Convecting Decaying Taylor Vortex

Verification of first-order and second-order temporal accuracy for the CVFEM and EBVC formulation in Nalu is performed using the method of manufactured solution (MMS) technique. For the unsteady isothermal, uniform laminar physics set, the exact solution of the convecting, decaying Taylor vortex is used.

\[
\begin{align*}
    u &= u_0 - \cos(\pi (x - u_0 t)) \sin(\pi (y - v_0 t)) e^{-2.0 \omega t} \\
    v &= v_0 + \sin(\pi (x - u_0 t)) \cos(\pi (y - v_0 t)) e^{-2.0 \omega t} \\
    p &= -\frac{p_0}{4} (\cos(2\pi (x - u_0 t)) + \cos(2\pi (y - v_0 t))) e^{-4\omega t}
\end{align*}
\]
In this study, the constants $u_0$, $v_0$, and $p_0$ are all assigned values of 1.0, and the viscosity $\mu$ is set to a constant value of 0.001. The value of $\omega$ is $\pi^2\mu$. This particular viscosity value results in a maximum cell Reynolds number of twenty.

### 4.2.1 Temporal Order Of Accuracy Results

The temporal order of accuracy for the first order backward Euler and second order BDF2 are outlined in Figure Fig. 4.1 and Figure Fig. 4.2. Each of these simulations used a hybrid factor of zero to ensure pure second order central usage. A fixed Courant number of two was used for each of the three meshes (100x100, 200x200 and 400x400). The simulation was run out to 0.2 seconds and $L_2$ error norms were computed. This scheme is also known as the standard incremental pressure, approximate pressure projection scheme.

Two other pressure projection schemes have been evaluated in this study. Each represent a simplification of the standard pressure projection scheme. Figure Fig. 4.3 outlines three projection schemes: the first is when the projected nodal gradient appearing in the fourth-order pressure stabilization is lagged while the second is the classic pressure-free pressure approximate projection scheme with second order pressure stabilization. The third is the baseline fourth-order incremental pressure projection scheme. The error plots demonstrate that lagging the projected nodal gradient for pressure retains second order accuracy. However, as expected the pressure free pressure projection scheme is confirmed to be first order accurate given the first order splitting error noted in this fully implicit momentum solve.

The Steady Taylor Vortex will be used to verify the spatial accuracy for the full set of advection operators supported in Nalu.

### 4.3 Higher Order 2D Steady Uniform Property: Taylor Vortex

A higher order unstructured CVFEM method has been developed by Domino [Dom14]. A 2D structured mesh study demonstrating second order time and third order in space scheme has been demonstrated. The below work has emphasis on unstructured meshes.

#### 4.3.1 Source Term Quadrature

Higher order accuracy is only demonstrated on solutions with source terms when a fully integrated approach is used. Lumping the source term evaluation is a second order error and is fully noted in the MMS study (not shown).

#### 4.3.2 Projected nodal gradients

Results show that one must use design order projected nodal gradients. Figure Fig. 4.4 demonstrates a code verification result for a steady thermal manufactured solution comparing lumped and consistent mass matrix approaches for the projected nodal gradient on a quadratic tquad mesh. In the lumped approach, a simple explicit algorithm is processed while for the consistent approach, a simple mass matrix inversion equation must be solved. The lumped approach is first order while the consistent approach retains the expected second order as the projected nodal gradient is expected to be order $P$. Both Dirichlet and periodic domains display the same order of convergence.

#### 4.3.3 Momentum and Pressure

The steady taylor vortex exact solution was run on a quadratic tquad mesh. Figure Fig. 4.5 demonstrates the order of accuracy for projected nodal gradients (pressure) and the velocity field (x-component). Second order accuracy for the projected nodal gradient (pressure) and third order for the velocity field is realized when the consistent mass matrix approach is used for the projected nodal pressure gradient. Note that this term is used in the pressure stabilization approach. However, order of convergence for the projected nodal pressure gradient and velocity field is compromised.
Fig. 4.1: Error norms as a function of timestep size for the $u$ and $v$ component of velocity using fourth order pressure stabilization with timestep scaling, backward Euler
Fig. 4.2: Error norms as a function of timestep size for the $u$ and $v$ component of velocity using fourth order pressure stabilization with timestep scaling, BDF2
Fig. 4.3: Error norms as a function of timestep size for the $u$ and $v$ component of velocity using the lagged projected nodal pressure gradient and pressure-free pressure projection scheme; all with timestep scaling, BDF2.
Fig. 4.4: Error norms as a function of mesh size for a CMM and LMM projected nodal gradient on a quadratic quad mesh.
when the lumped mass matrix approach is used for the pressure stabilization term. Note that both approaches use the fully integrated pressure gradient term in the momentum equation (i.e., $\int p_i dS$). Therefore, the reduced order of integration for the projected nodal pressure gradient has consequence on the velocity field order of convergence.

Again, dirichlet (inflow) and periodic domains display the same order of convergence.

![Fig. 4.5: Error norms as a function of mesh size for the Steady Taylor Vortex momentum and pressure gradient field.](image)

**4.4 3D Steady Non-isothermal with Buoyancy**

Building from the basic functional form of the Taylor Vortex, a non-isothermal solution (momentum, pressure and static enthalpy) is manufactured as follows:

\[
\begin{align*}
    u &= -u_o \cos(a\pi x) \sin(a\pi y) \sin(a\pi z) \\
    v &= +v_o \sin(a\pi x) \cos(a\pi y) \sin(a\pi z) \\
    w &= -w_o \sin(a\pi x) \sin(a\pi y) \cos(a\pi z) \\
    p &= -\frac{p_o}{4} (\cos(2a\pi x) + \cos(2a\pi y) + \cos(2a\pi z)) \\
    h &= +h_o \cos(a_h \pi x) \cos(a_h \pi y) \cos(a_h \pi z)
\end{align*}
\]

The equation of state is simply the ideal gas law,

\[
\rho = \frac{P_{ref} M}{RT}
\]
Nalu Documentation, Release 1.2.0

The simulation is run on a three-dimensional domain ranging from -0.05:+0.05 with constants $a, a_h, M, R, C_p, P^{ref}, T_{ref}, Pr, \mu$ equal to (20, 10, 30, 10, 0.01, 100, 300, 0.8, 0.00125), respectively.

At reference conditions, the density is unity. The effects of buoyancy are also provided by an arbitrary gravity vector of magnitude of approximately ten, $g_i = (-5, 6, 7)^T$. On this domain, the enthalpy ranges from zero to unity. Given the reference values, the temperature field ranges from 300K to 400K which is designed to mimic a current LES non-isothermal validation suite.

Edge- and element-based discretization (P=1) demonstrate second order convergence in the $L_2$ norm for u, v, w and mixture fraction. This test is captured within the variableDensityMMS regression test suite.

4.5 3D Steady Non-uniform with Buoyancy

Building from the basic functional form of the Taylor Vortex, a non-uniform solution (momentum, pressure and mixture fraction) is manufactured as follows:

\[
\begin{align*}
    u &= -u_o \cos(a \pi x) \sin(a \pi y) \sin(a \pi z) \\
    v &= +v_o \sin(a \pi x) \cos(a \pi y) \sin(a \pi z) \\
    w &= -w_o \sin(a \pi x) \sin(a \pi y) \cos(a \pi z) \\
    p &= -\frac{P_o}{4} (\cos(2a \pi x) + \cos(2a \pi y) + \cos(2a \pi z)) \\
    z &= +z_o \cos(a_z \pi x) \cos(a_z \pi y) \cos(a_z \pi z)
\end{align*}
\]  
(4.6)

The equation of state is simply the standard inverse mixture fraction property expression for density,

\[
\rho = \frac{1}{\frac{z}{\rho_o} + \frac{1-z}{\rho_s}}
\]  
(4.7)

The simulation is run on a three-dimensional domain ranging from -0.05:+0.05 with constants $a, a_z, \rho_o, \rho_s, Sc, \mu$ equal to (20, 10, 0.1, 1.0, 0.8, 0.001), respectively.

At reference conditions, the density is that of the primary condition (0.1). The effects of buoyancy are also provided by an arbitrary gravity vector of magnitude of approximately ten, $g_i = (-5, 6, 7)^T$. On this domain, the mixture fraction ranges from zero to unity. This test case is designed to support the helium plume DNS study with primary and secondary density values of helium and air, respectively.

Edge- and element-based discretization (P=1) demonstrate second order convergence in the $L_2$ norm for u, v, w and mixture fraction. This test is captured within the variableDensityMMS regression test suite.

4.6 2D Steady Laplace Operator

The evaluation of the low-Mach Laplace (or diffusion operator) is of great interest to the core supported application space. Although the application space for Nalu is characterized by a highly turbulent flow, the usage of an approximate pressure projection scheme always makes the chosen Laplace form important. Although the element-based scheme is expected to be accurate, it can be problematic on high aspect ratio meshes as element-based schemes are not guaranteed to be monotonic for aspect ratios as low as $\sqrt{2}$ for FEM-based schemes and $\sqrt{3}$ for CVEM-based approaches (both when using standard Gauss point locations). Conversely, while the edge-based operator is accurate on high aspect ratio meshes, it suffers on skewed meshes due to both quadrature error and the inclusion of a non orthogonal correction (NOC).

In order to assess the accuracy of the Laplace operator, a the two-dimensional MMS temperature solution is used. The functional temperature field takes on the following form:

\[
T = \frac{\lambda}{4} (\cos(2a \pi x) + \cos(2a \pi y)).
\]  
(4.8)
The above manufactured solution is run on three meshes of domain size of 1x1. The domain was first meshed as a triangular mesh and then converted to a tquad4 mesh. Therefore, non orthogonal correction (NOC) effects are expected for the edge-based scheme. In this study, both $\lambda$ and $a$ are unity. Either periodic or Dirichlet conditions are used for boundary conditions.

A brief overview of the diffusion operator tested is now provided. For more details, consult the theory manual. The general diffusion kernel is as follows:

$$ - \int_G \frac{\partial \phi}{\partial x_j} A_j. $$

(4.9)

The choice of the gradient operator at the integration point is a functin of the underlying method. For CVFEM, the gradient operator is provided by the standard shape function derivatives,

$$ \frac{\partial \phi_{ip}}{\partial x_j} = \sum \frac{\partial N_{ip}}{\partial x_j} \phi_k. $$

(4.10)

For the edge-based scheme, a blending of an orthogonal gradient along the edge and a NOC is employed,

$$ \frac{\partial \phi_{ip}}{\partial x_j} = G_j \phi + \left[ (\phi_R - \phi_L) - G_{i} \phi_{dx_j} \right] \frac{A_j}{A_k dx_k}. $$

(4.11)

In the above equation, $G_j \phi$ is a projected nodal gradient. The general equation for this quantity is

$$ \int w_t G_j \phi dV = \int w_t \frac{\partial \phi}{\partial x_j} dV. $$

(4.12)

Possible forms of this include either lumped or consistent mass (the later requires a global equation solve) with either the full CVFEM stencil or the edge-based (reduced) stencil. The above equation can even be applied within the element itself for a simple, local integration step that provides a piecewise constant gradient over the element.

The simulation study is run with the following diffusion operators: 1) the standard CVFEM operator, 2) the edge-based operator with CVFEM projected nodal gradients (NOC), 3) the edge-based operator with edge-based projected nodal gradients (NOC), 4) the edge-based operator without NOC correction, 5) the CVFEM operator with shifted integration points to the edge, and, lastly, 6) a mixed edge/element scheme in which the orthogonal diffusion operator is edge-based while the NOC terms are based on the elemental CVFEM gradient (either evaluated at the given integration point or integrated over the element for a piecewise constant form).

The last operator is interesting in that it represents a candidate operator for the CVFEM pressure Poisson system when high aspect ratio meshes are used. Figure Fig. 4.6 outlines the convergence of the five above operators; shown are all of the standard norms ($\infty$, 1 and 2) for the R0, R1 and R2 mesh refinements. The results in the left side of the figure indicate that the edge-based scheme with NOC retains second-order convergence for all norms when the more accurate CVFEM projected nodal gradient is used (lumped only tested given its good results). Convergence is degraded with the edge-based scheme when NOC terms are either neglected or use the reduced edge-based projected nodal gradient. The CVFEM-based methods are second order accurate in the $L_1$ and $L_2$ norms, however, questionable results are noted in the $L_\infty$ norm for all methods that include any shape function derivative for local or elemental piecewise constant gradient operators. Shifting the Gauss points from the standard subcontrol surface to the edges of the element (while still using shape function derivatives) is only problematic in the $L_\infty$ norm (just as the standard CVFEM approach). The use of the mixed-approach with a piecewise constant gradient over the element demonstrates the same behavior as when using the integration point CVFEM gradient operator. Figure Fig. 4.7 outlines two more refinement meshes for the CVFEM operator (R3 and R4). Results indicate that the $L_\infty$ norm is approaching second order accuracy.

An inspection of the magnitude of error between the exact and computed temperature for the R3 mesh is shown in Figure Fig. 4.8. Results show that the CVFEM error is highest at the corner mesh nodes that form a reduced stencil. The edge-based scheme shows increased error at the higher aspect ratio dual mesh.
Fig. 4.6: Error norms for tquad4 refinement study. R0, R1, and R2 refinement.

Fig. 4.7: Error norms for tquad4 refinement study. R0, R1, R2, R3, R4, and R4 refinement Error for CVFEM.
Fig. 4.8: Magnitude of the $L_\infty$ temperature norm comparing the edge-based CVFEM (NOC) and standard CVFEM operators on the R3 mesh.
4.7 3D Steady Laplace Operator with Nonconformal Interface

A three dimensional element-based verification study is provided to evaluate the DG-based CVFEM approach.

\[ T = \frac{\lambda}{4} (\cos(2a\pi x) + \cos(2a\pi y) + \cos(2a\pi z)). \]  

(4.13)

Figure Fig. 4.9 represents the MMS field for temperature. The simulation study includes uniform refinement of a first- and second-order CVFEM basis. Both temperature field and projected nodal gradient norms are of interest.

Figure Fig. 4.10 outlines the linear and quadratic basis. For P1, the CVFEM temperature field predicts between second and first order while for P2, third order is recovered. When using a consistent mass matrix for the projected nodal gradient, second order is noted, see Figure Fig. 4.11.

<table>
<thead>
<tr>
<th>dof</th>
<th>( L_{\infty} )</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>3.33407e-16</td>
<td>2.30477e-17</td>
<td>4.8103e-17</td>
</tr>
<tr>
<td>dTdx</td>
<td>4.13225e-13</td>
<td>9.06848e-15</td>
<td>1.98249e-14</td>
</tr>
<tr>
<td>dTdy</td>
<td>4.15668e-13</td>
<td>1.11256e-14</td>
<td>2.15065e-14</td>
</tr>
<tr>
<td>dTdz</td>
<td>4.31211e-13</td>
<td>9.60785e-15</td>
<td>1.97517e-14</td>
</tr>
</tbody>
</table>

Given the order of accuracy results for the P1 implementation, a linear patch test was run. The temperature solution was simply, \( T(x, y, z) = x + y + z \); all analytical temperature gradients are unity. Table Table 4.7 demonstrates the successful patch test results for a P1 CVFEM implementation.

4.8 Precursor-based Simulations

In the field of turbulent flow modeling and simulation, often times simulations may require sophisticated boundary conditions that can only be obtained from previously run high-fidelity simulations. For example, consider a typical turbulent jet simulation in which the experimental inlet condition was preceeded by a turbulent pipe entrance region. Furthermore, in most cases the ability to adequately predict the developing jet flow regime may be highly sensitive to proper inlet conditions. Figure Fig. 4.12 and Figure Fig. 4.13 outline a process in which a high fidelity large-eddy simulation of a periodic pipe was used to determine a representative inlet condition for a turbulent round jet. Specifically, a precursor pipe flow simulation is run with velocity provided to an output file. This output file serves as the inlet velocity profile for the subsequent simulation.

In the above use case, as with most general simulation studies, the mesh resolution for the precursor simulation may be different from the subsequent simulation. Moreover, the time scale for the precursor simulation may be much shorter than the subsequent simulation. Finally, the data required for the subsequent simulation will likely be at different time steps unless an overly restrictive rule is enforced, i.e., a fixed timestep for each simulation.

In order to support such use cases, extensive usage of the the Sierra Toolkit infrastructure is expected, most notably within the IO and Transfer modules. The IO module can be used to interpolate the precursor simulation boundary data to the appropriate time required by the subsequent simulation. Specifically, the IO module linearly interpolates between the closest data interval in the precursor data set. A recycling offset factor is included within the IO interface that allows for the cycling of data over the full time scale of interest within the subsequent simulation. For typical statistically stationary turbulent flows, this is useful to ensure proper statistics are captured in subsequent runs.

After the transient data set from the precursor simulation is interpolated to the proper time, the data is spatially interpolated and transferred to the subsequent simulation mesh using the STK Transfer module. Efficient coarse parallel searches (point/bounding box) provide the list of candidate owning elements on which the fine-scale search operates to determine the best search candidate. The order of spatial interpolation depends on the activated numerical discretization. Therefore, by combining the two STK modules, the end use case to support data transfers of boundary data is supported.
Fig. 4.9: MMS temperature field for nonconformal algorithm.
Fig. 4.10: MMS order of accuracy for nonconformal algorithm. Temperature norms for P1 and P2 elements.

Fig. 4.11: MMS order of accuracy for nonconformal algorithm. Projected nodal gradient norms for P1 and P2 elements.
Fig. 4.12: Precursor periodic pipe flow large-eddy simulation that will serve as the inlet boundary condition for a subsequent turbulent jet simulation.
Fig. 4.13: Subsequent turbulent jet simulation using the precursor data obtained by a periodic pipe flow.
As noted, there are many other use cases in addition to the overviewed turbulent jet simulation that require such temporal/spatial interpolation capabilities. For example, in typical wind farm simulation applications, a proper atmospheric boundary layer (ABL) configuration is required to capture a given energy state of the boundary layer. In this case, a periodic precursor ABL is run with the intent of providing the inlet condition to the subsequent wind farm domain. As with the previous description, the infrastructure requirements remain the same.

Finally, the general creation of an “input_output” region can be useful in validation cases where data are provided at a subset of the overall simulation domain. Such is the case in PIV and PLIF experimental data sets. Although the temporal interpolation is not required, the transfer of this data at high time step frequency is useful for post-processing.

In this verification section, a unit test approach will be referenced that is captured within the STK module test suite. This foundational test coverage provides confidence in the underlying IO and parallel search/interpolation processes. In addition to briefly describing the infrastructure testing, application tests are provided as further evidence of correctness. The application test first is based on the convecting Taylor vortex verification case while the second is the ABL precursor application space demonstration.

### 4.8.1 Infrastructure Unit Test

As noted above, the Nalu application code leverages the STK unit tests within the IO and transfer modules. Interested parties may peruse the STK product under a cloned Trilinos cloned project, i.e., Trilinos/packages/stk/stk_doc_test. Under the STK product, a variety of search, transfer and input/output tests exist. For example, interpolation in time using the IO infrastructure is captured in addition to a variety of search and transfer use cases.

### 4.8.2 Application Verification Test; Convecting Taylor Vortex

Although the foundational infrastructure tests are useful, the application must adequately interface the IO and Transfer modules to support the end use case. In this section, two tests will be demonstrated that illustrate the precursor/subsequent simulation use case.

The first test considered will be the convecting Taylor vortex. In this configuration, a very fine mesh simulation is run with boundary conditions specified in the input file to be of type, “convecting_taylor_vortex”. This specifies the analytical function for the x-component of velocity as provided in Equation (4.1). The simulation is run while providing output to a Realm of type “input_output” using a transfer objective, “input_output”. The transient data is then used for a series of mesh refinement studies. The viscosity is set at 0.001 while the domain is 1x1. In this study, the edge-based scheme is activated, however, the precursor interpolation methodology is not sensitive to the underlying numerical method.

In Figure Fig. 4.14, a plot between the analytical x-component of velocity and a nodal query of the outputted velocity component is provided. Although not immediately apparent, the values are exactly the same. This finding confirms that the data set output is consistent with the nodal exact value.

With the precursor data base containing the full transient data, a refinement study can be accomplished to determine numerical errors. Although the full machinery for temporal and spatial interpolation is active, the data requirement at the coarse simulations are represented as the subsets of the full data - both in space and time. As such, no numerical degradation of second-order accuracy is expected. The subsequent simulations are run with an “external_data” transfer objective and a Realm of type, “external_data_provider”.

In Figure Fig. 4.15, a plot of $L_2$ norms of the x-component of velocity are shown for the subsequent set of simulations that use the precursor data. Results of this study verify both the second-order temporal accuracy of the underlying numerical scheme and the process of using both space and time interpolation.
Fig. 4.14: Temporal plot of the exact x-velocity component and precursor output.
Fig. 4.15: Temporal accuracy plot of the x-velocity component norms using the precursor data.
4.8.3 Application Verification Test; ABL Precursor/Subsequent

The second, and final application test is an ABL-based simulation that first runs a precursor periodic solution in order to capture an appropriate ABL specification. The boundary data saved from the precursor simulation are then used as an inflow boundary condition for the subsequent ABL simulation. As the precursor is run for a smaller time frame than the subsequent simulation, the usage of data cycling is active. This full integration test is captured within the regression test suite. The simulation is described as a non-isothermal turbulent flow.

In Figure Fig. 4.16, the transient recycling of the ABL thermal inflow boundary condition is captured at an arbitrary nodal location very near the wall boundary condition. The subsequent simulation reads the precursor data set for time zero seconds until 3000 seconds at which time it recycles the inlet condition back to the initial precursor simulation time, i.e., zero seconds. An interesting note in this study is the fact that the precursor periodic simulation, which was run at the same Courant number, was using time steps approximately three times greater than the subsequent inflow/open configuration.

In Figure Fig. 4.17, (left) the subsequent simulation inflow temperature field and full profile over the full domain is captured at approximately 4620 seconds. On the right of the figure, the temperature boundary condition data that originated from the precursor simulation, which was read into the subsequent “external_field_provider” Realm, is shown (again at approximately 4620 seconds).

4.9 Boussinesq Verification

4.9.1 Unit tests

Unit-level verification was performed for the Boussinesq body force term (3.9) with a nodal source appropriate to the edge-based scheme (MomentumBoussinesq_srcNodeSuppAlg.single_value) as well as a separate unit test for the element-based “consolidated” Boussinesq source term (MomentumKernelHex8Mesh.buoyancy_boussinesq). Proper volume integration with different element topologies is also tested (the “volume integration” tests in the MasterElement and HOMasterElement test cases).

4.9.2 Stratified MMS

A convergence study using the method of manufactured solutions (MMS) was also performed to assess the integration of the source term into the governing equations. An initial condition of a Taylor-Green vortex for velocity, a zero-gradient pressure field, and a linear enthalpy profile in the z-direction are imposed.

\[
\begin{align*}
    u &= -\frac{1}{2} \cos(2\pi x) \sin(2\pi y) \sin(2\pi z) \\
    v &= \sin(2\pi x) \cos(2\pi y) \sin(2\pi z) \\
    w &= -\frac{1}{2} \sin(2\pi x) \sin(2\pi y) \cos(2\pi z) \\
    p &= 0 \\
    h &= z.
\end{align*}
\]  

(4.14)

The simulation is run on a three-dimensional domain ranging from -1/2:+1/2 with reference density, reference temperature and the thermal expansion coefficient to equal to 1, 300, and 1, respectively. \(\beta\) is much larger than typical \((1/T_{ref})\) so that the buoyancy term is a significant term in the MMS in this configuration.

The Boussinesq buoyancy model uses a gravity vector of magnitude of ten in the z-direction opposing the enthalpy gradient, \(g_z = (0, 0, -10)^T\). The temperature for this test ranges between 250K and 350K. The test case was run with a regular hexahedral mesh, using the edge-based vertex centered finite volume scheme. Each case was run with a fixed maximum Courant number of 0.8 relative to the specified solution.
Fig. 4.16: Transient recycling of the temperature inflow boundary condition for the subsequent ABL simulation. After 3000 seconds, the inflow boundary condition is recycled from the beginning of the precursor simulation.
Fig. 4.17: Subsequent simulation showing the full temperature domain (left) and on the precursor inflow temperature boundary condition field obtained from the perspective of the subsequent “external_field_provider” Realm (right).

Table 4.1: Error in x-component of velocity

<table>
<thead>
<tr>
<th>h</th>
<th>$L_{\infty}$</th>
<th>L1</th>
<th>L2</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/32</td>
<td>8.91e-3</td>
<td>1.12e-3</td>
<td>1.77e-3</td>
<td>NA</td>
</tr>
<tr>
<td>1/64</td>
<td>2.03e-3</td>
<td>3.04e-4</td>
<td>4.27e-4</td>
<td>2.05</td>
</tr>
<tr>
<td>1/128</td>
<td>4.65e-4</td>
<td>7.64e-5</td>
<td>1.05e-4</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Table 4.2: Error in y-component of velocity

<table>
<thead>
<tr>
<th>h</th>
<th>$L_{\infty}$</th>
<th>L1</th>
<th>L2</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/32</td>
<td>1.78e-2</td>
<td>2.31e-3</td>
<td>3.47e-3</td>
<td>NA</td>
</tr>
<tr>
<td>1/64</td>
<td>4.18e-3</td>
<td>5.92e-4</td>
<td>8.23e-4</td>
<td>2.06</td>
</tr>
<tr>
<td>1/128</td>
<td>9.70e-4</td>
<td>1.50e-4</td>
<td>2.02e-4</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Table 4.3: Error in z-component of velocity

<table>
<thead>
<tr>
<th>h</th>
<th>$L_{\infty}$</th>
<th>L1</th>
<th>L2</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/32</td>
<td>8.68e-2</td>
<td>1.17e-3</td>
<td>1.73e-3</td>
<td>NA</td>
</tr>
<tr>
<td>1/64</td>
<td>2.00e-3</td>
<td>2.99e-4</td>
<td>4.22e-4</td>
<td>2.04</td>
</tr>
<tr>
<td>1/128</td>
<td>4.64e-4</td>
<td>7.63e-5</td>
<td>1.05e-4</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Table 4.4: Error in temperature

<table>
<thead>
<tr>
<th>h</th>
<th>$L_{\infty}$</th>
<th>L1</th>
<th>L2</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/32</td>
<td>1.09e-2</td>
<td>1.46e-3</td>
<td>2.10e-3</td>
<td>NA</td>
</tr>
<tr>
<td>1/64</td>
<td>2.06e-3</td>
<td>3.13e-4</td>
<td>4.19e-4</td>
<td>2.32</td>
</tr>
<tr>
<td>1/128</td>
<td>4.18e-4</td>
<td>7.54e-5</td>
<td>1.00e-4</td>
<td>2.06</td>
</tr>
</tbody>
</table>

This test is added to Nalu’s nightly test suite, testing that the convergence rate between the 1/32 and 1/64 element sizes is second order.
4.10 3D Hybrid 1x2x10 Duct: Specified Pressure Drop

In this section, a specified pressure drop in a simple 1x2x10 configuration is run with a variety of homogeneous blocks of the following topology: hexahedral, tetrahedral, wedge, and thexahedral. This analytical solution is given by an infinite series and is coded as the “1x2x10” user function. The simulation is run with an outer wall boundary condition with two open boundary conditions. The specified pressure drop is 0.016 over the 10 cm duct. The density and viscosity are 1.0e-3 and 1.0e-4, respectively. The simulation study is run a fixed Courant numbers with a mesh spacing ranging from 0.2 to 0.025. Figure Fig. 4.18 provides the standard velocity profile for the structured hexahedral and unstructured tetrahedral element type.

![Streamwise velocity profile for specified pressure drop flow; tetrahedral and hexahedral topology.](image)

The simulation study employed a variety of elemental topologies of uniform mesh spacing as noted above. Figure Fig. 4.19 outlines the convergence in the $L_2$ norm using the low-order elemental CVFEM implementation using the recently changed tetrahedral and wedge element quadrature rules. Second-order accuracy is noted. Interestingly, the hexahedral and wedge topology provided nearly the same accuracy. Also, the tetrahedral accuracy was approximately four times greater. Finally, the Thexahedral topology proved to be second-order, however, provided very poor accuracy results.

4.11 3D Hybrid 1x1x1 Cube: Laplace

The standard Laplace operator is evaluated on the full set of low-order hybrid topologies (not inclucing the pyramid). In this example, the temperature field is again,

\[
T = \frac{\lambda}{4} (\cos(2\alpha\pi x) + \cos(2\alpha\pi y) + \cos(2\alpha\pi z)).
\]  

(4.15)

Figure Fig. 4.20 represents the MMS field for temperature on a variety of mesh topologies. The thexahedral mesh is obtained from the standard uniform spacing tetrahedral mesh (not shown). The tetrahedral mesh shown is a tet-based conversion of the standard structured hexahedral mesh. This approach ensures that the number of nodes between the hexahedral and tetrahedral mesh are the same.

Figure Fig. 4.21 provides the $L_2$ norms, all of which are showing second-order accuracy. In Figure Fig. 4.22, the $L_0$ error is shown. As indicated from the convergence plot, slight degradation in order-of-accuracy is noted for the thexahedral topology.
Fig. 4.19: $L_2$ error for the CVFEM scheme on a variety of element types.
4.12 Open Boundary Condition With Outflow Thermal Stratification

In situations with significant thermal stratification at the outflow of the domain, the standard open boundary condition alone is not adequate because it requires the specification of motion pressure at the boundary, and this is not known \textit{a priori}. Two solutions to this problem are: 1) to use the global mass flow rate correction option, or 2) to use the standard open boundary condition in which the buoyancy term uses a local time-averaged reference value, rather than a single reference value.

We test these open boundary condition options on a simplified stratified flow through a channel with slip walls. The flow entering the domain is non-turbulent and uniformly 8 m/s. The temperature linearly varies from 300 K to 310 K from the bottom to top of the channel with compatible, opposite-sign heat flux on the two walls to maintain this profile. The Boussinesq buoyancy option is used, and the density is set constant to $1.17804 \, \text{kg/m}^3$. This density is compatible with the reference pressure of 101325 Pa and a reference temperature of 300 K. The viscosity is set to $1.0e-5 \, \text{Pa-s}$. \textit{The flow should keep its inflow velocity and temperature profiles throughout the length of the domain.}

The domain is 3000 m long, 1000 m tall, and 20 m wide with 300 x 100 x 2 elements. The upper and lower boundaries are symmetry with the specified normal gradient of temperature option used such that the gradient matches the initial temperature profile with its gradient of 0.01 K/m. Flow enters from the left and exits on the right. The remaining boundaries are periodic.

We test the problem on three configurations: 1) using the standard open boundary condition, 2) using the global-mass-flow-rate-correction option, and 3) using the standard open boundary condition with a local moving-time-averaged reference temperature in the Boussinesq buoyancy term.

Figure Fig. 4.23 shows the across-channel profile of outflow streamwise velocity. It is clear that in configuration 1, the velocity is significantly distorted from the correct solution. Configurations 2 and 3 remedy the problem. However, if we reduce the range of the x-axis, as shown in Figure Fig. 4.24, we see that configuration 3, the use of the standard open boundary condition with a local moving-time-averaged Boussinesq reference temperature, provides a superior...
Fig. 4.21: $L_2$ norms for the full set of hybrid Laplace MMS study.
Fig. 4.22: $L_\infty$ norms for the full set of hybrid Laplace MMS study.
solution in this case. In Figure, Fig. 4.25, we also see that configuration 1 significantly distorts the temperature from the correct solution.

![Outflow velocity profiles for the thermally stratified slip-channel flow.]

We also verify that the global mass-flow-rate correction of configuration 2 is correcting the outflow mass flow rate properly. The output from Nalu showing the correction is correct and is shown as follows:

<table>
<thead>
<tr>
<th>Mass Balance Review:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density accumulation:</td>
</tr>
<tr>
<td>Integrated inflow:</td>
</tr>
<tr>
<td>Integrated open:</td>
</tr>
<tr>
<td>Total mass closure:</td>
</tr>
<tr>
<td>A mass correction of:</td>
</tr>
<tr>
<td>Post-corrected integrated open: 188486.0356751139</td>
</tr>
</tbody>
</table>

### 4.13 Specified Normal Temperature Gradient Boundary Condition

The motivation for adding the ability to specify the boundary-normal temperature gradient is atmospheric boundary layer simulation in which the upper portion of the domain often contains a stably stratified layer with a temperature gradient that extends all the way to the upper boundary. The desire is for the simulation to maintain that gradient throughout the simulation duration.

Our test case is a laminar infinite channel with slip walls. In this case, the flow velocity is zero so the problem is simply a heat conduction through fluid. The density is fixed as constant, and there are no source terms including buoyancy.

This problem has an analytical solution for the temperature profile across the channel:

\[
T(t, z) = T(t_0, z_0) + \frac{-gH - g_0}{H} \kappa_{eff}(t - t_0) + g_0(z - z_0) + \frac{-gH - g_0}{2H}(z - z_0)^2, \quad (4.16)
\]
4.13. Specified Normal Temperature Gradient Boundary Condition

Fig. 4.24: Outflow velocity profiles for the thermally stratified slip-channel flow considering only the case with the global mass-flow-rate correction and the standard open boundary with the local moving-time-averaged Boussinesq reference value.

Fig. 4.25: Outflow temperature profiles for the thermally stratified slip-channel flow.
where \( t_0 \) is the initial time; \( z_0 \) is the height of the lower channel wall; \( H \) is the channel height; \( g_0 \) and \( g_H \) are the wall-normal gradients of temperature at the lower and upper walls, respectively; \( \kappa_{eff} \) is the effective thermal diffusivity; and \( z \) is the distance in the cross-channel direction. The sign of the temperature gradients assumes that boundary normal points inward from the boundary. For this solution to hold, the initial solution must be that of (4.16) with \( t = t_0 \).

For all test cases, we use a domain that is 10 m x 10 m in the periodic (infinite) directions, and 100 m in the cross-channel (\( z \)) direction. We specify a constant density of 1 kg/m\(^3\), zero velocity, no buoyancy source term, a viscosity of 1 Pa-s, and a laminar Prandtl number of 1. No turbulence model is used. The value of \( T(t_0, z_0) \) is 300 K.

### 4.13.1 Simple Linear Temperature Profile: Equal and Opposite Specified Temperature Gradients

A simple verification test that is representative of a stable atmospheric capping inversion is to compute the simple thermal channel with equal and opposite specified temperature gradients on each wall. By setting \( g_H = -g_0 \) in Equation (4.16), we are left with

\[
T(z) = T(z_0) + g_0(z - z_0).
\]  

In other words, if we set the initial temperature profile to that of (4.17), with \( g_H = -g_0 \), the profile should remain fixed for all time. In this case, we set \( g_0 = 0.01 \) K/m and \( g_H = -0.01 \) K/m.

We use a mesh that 2 elements wide in the periodic directions and 20 elements across the channel. We simulate a long time period of 25,000 s. Figure Fig. 4.26 shows that the computed and analytical solutions agree.

![Fig. 4.26: The analytical (black solid) and computed (red dashed) temperature profile from the case with \( g_H = -g_0 \) at \( t = 25,000 \) s.](image-url)
4.13.2 Parabolic Temperature Profile: Equal Specified Temperature Gradients

Next, we verify the specified normal temperature gradient boundary condition option by computing the simple thermal channel with equal specified temperature gradients, which yields the full time-dependent solution of Equation (4.16). Here, we set $g_0 = g_H = 0.01 \, \text{K/m}$.

We use meshes that are 2 elements wide in the periodic directions and 20, 40, and 80 elements across the channel. We simulate a long time period of 25,000 s. Figure Fig. 4.27 shows that the computed and analytical solutions agree. There is no apparent overall solution degradation on the coarser meshes.

Fig. 4.27: The analytical (black solid) and computed (colored) temperature profile from the case with $g_H = g_0$ at $t = 25,000 \, \text{s}$. 
BIBLIOGRAPHY


INDEX

Symbols
-D, -debug
   naluX command line option, 11
-h, -help
   naluX command line option, 11
-i, -input-deck
   naluX command line option, 11
-o, -log-file
   naluX command line option, 11
-p, -pprint
   naluX command line option, 11
-v, -version
   naluX command line option, 11

A
abl_forcing
   Nalu Input File Parameter, 32
abl_forcing.momentum.computed
   Nalu Input File Parameter, 33
abl_forcing.momentum.heights
   Nalu Input File Parameter, 33
abl_forcing.momentum.relaxation_factor
   Nalu Input File Parameter, 33
abl_forcing.momentum.target_part_format
   Nalu Input File Parameter, 33
abl_forcing.momentum.velocity_x
   Nalu Input File Parameter, 33
abl_forcing.momentum.velocity_y
   Nalu Input File Parameter, 33
abl_forcing.momentum.velocity_z
   Nalu Input File Parameter, 33
abl_forcing.output_frequency
   Nalu Input File Parameter, 34
abl_forcing.search_expansion_factor
   Nalu Input File Parameter, 33
abl_forcing.search_method
   Nalu Input File Parameter, 33
abl_forcing.search_tolerance
   Nalu Input File Parameter, 33
abl_forcing.temperature.temperature
   Nalu Input File Parameter, 34
activate_aura

B
balance_node_iterations
   Nalu Input File Parameter, 18
balance_node_target
   Nalu Input File Parameter, 18
balance_nodes
   Nalu Input File Parameter, 18
bc.target_name
   Nalu Input File Parameter, 21
bc.wall_user_data
   Nalu Input File Parameter, 21
boundary_conditions
   Nalu Input File Parameter, 20

D
data_probes
   Nalu Input File Parameter, 30
data_probes.output_frequency
   Nalu Input File Parameter, 30
data_probes.search_expansion_factor
   Nalu Input File Parameter, 31
data_probes.search_method
   Nalu Input File Parameter, 30
data_probes.search_tolerance
   Nalu Input File Parameter, 30
data_probes.specifications
   Nalu Input File Parameter, 31
data_probes.specifications.from_target_part
   Nalu Input File Parameter, 31
data_probes.specifications.line_of_site_specifica...
Nalu Documentation, Release 1.2.0

Nalu Input File Parameter, 31
data_probes.specifications.name
Nalu Input File Parameter, 31
data_probes.specifications.output_variables
Nalu Input File Parameter, 31
dtctrl.target_courant
Nalu Input File Parameter, 27
dtctrl.time_step_change_factor
Nalu Input File Parameter, 27

E

equation_systems
Nalu Input File Parameter, 19
equation_systems.max_iterations
Nalu Input File Parameter, 19
equation_systems.name
Nalu Input File Parameter, 19
equation_systems.solver_system_specification
Nalu Input File Parameter, 19
equation_systems.systems
Nalu Input File Parameter, 19
ExampleClass (C++ class), 59
ExampleClass::~ExampleClass (C++ function), 59
ExampleClass::AnotherMethod (C++ function), 60
ExampleClass::DoNothing (C++ function), 59
ExampleClass::DoSomething (C++ function), 59
ExampleClass::ExampleClass (C++ function), 59
ExampleClass::fAnswer (C++ member), 60
ExampleClass::fQuestion (C++ member), 60
ExampleClass::SomeProtectedMethod (C++ function), 60
ExampleClass::VeryUsefulMethod (C++ function), 59

G
gaussian_decay_radius
Nalu Input File Parameter, 27
gaussian_decay_target
Nalu Input File Parameter, 27

I

initial_conditions
Nalu Input File Parameter, 20
initial_conditions.constant
Nalu Input File Parameter, 20
initial_conditions.target_name
Nalu Input File Parameter, 20
initial_conditions.user_function
Nalu Input File Parameter, 20

L

linear_solvers.bamg_coarsen_type
Nalu Input File Parameter, 16
linear_solvers.bamg_cycle_type
Nalu Input File Parameter, 16
linear_solvers.bamg_max_levels
Nalu Input File Parameter, 16
linear_solvers.bamg_num_sweeps
Nalu Input File Parameter, 16
linear_solvers.bamg_output_level
Nalu Input File Parameter, 15
linear_solvers.bamg_relax_order
Nalu Input File Parameter, 16
linear_solvers.bamg_relax_type
Nalu Input File Parameter, 16
linear_solvers.bamg_strong_threshold
Nalu Input File Parameter, 16
linear_solvers.kspace
Nalu Input File Parameter, 15
linear_solvers.max_iterations
Nalu Input File Parameter, 15
linear_solvers.method
Nalu Input File Parameter, 15
linear_solvers.muelu_xml_file_name
Nalu Input File Parameter, 15
linear_solvers.name
Nalu Input File Parameter, 14
linear_solvers.output_level
Nalu Input File Parameter, 15
linear_solvers.preconditioner
Nalu Input File Parameter, 15
linear_solvers.recompute_preconditioner
Nalu Input File Parameter, 15
linear_solvers.reuse_preconditioner
Nalu Input File Parameter, 15
linear_solvers.summarize_muelu_timer
Nalu Input File Parameter, 15
linear_solvers.tolerance
Nalu Input File Parameter, 15
linear_solvers.type
Nalu Input File Parameter, 15
linear_solvers.write_matrix_files
Nalu Input File Parameter, 15

M

material_properties
Nalu Input File Parameter, 23
material_properties.constant_specification
Nalu Input File Parameter, 23
material_properties.reference_quantities
Nalu Input File Parameter, 23
material_properties.specifications
Nalu Input File Parameter, 24
material_properties.specifications.name
number_of_points, 28
omega, 27
output, 25
output.compression_level, 26
output.output_data_base_name, 25
output.output_forced_wall_time, 25
output.output_frequency, 25
output.output_node_set, 26
output.output_start, 25
output.output_variables, 26
periodic_user_data, 22
polynomial_order, 18
post_processing, 31
post_processing.frequency, 32
post_processing.output_file_name, 32
post_processing.parameters, 32
post_processing.physics, 31
post_processing.target_name, 32
post_processing.type, 31
radius, 27
restart, 26
restart.compression_level, 26
restart.max_data_base_step_size, 26
restart.restart_data_base_name, 26
restart.restart_forced_wall_time, 26
restart.restart_frequency, 26
restart.restart_node_set, 26
restart.restart_start, 26
restart.restart_time, 26
search_target_part, 27
simulations, 34
solve_frequency, 18
support_inconsistent_multi_state_restart, 18
turbulence_averaging.specifications, 29
turbulence_averaging.specifications.compute_favre_stress, 29
turbulence_averaging.specifications.compute_favre_tke, 29
turbulence_averaging.specifications.compute_lambda_ci, 29
turbulence_averaging.specifications.compute_q_criterion, 29
turbulence_averaging.specifications.compute_resolved_stress, 29
turbulence_averaging.specifications.compute_reynolds_stress, 29
turbulence_averaging.specifications.compute_sfs_stress, 29
turbulence_averaging.specifications.compute_temperature_resolved_flux, 29
turbulence_averaging.specifications.compute_temperature_sfs_flux, 29
turbulence_averaging.specifications.compute_tke, 29
turbulence_averaging.specifications.compute_vorticity, 29
turbulence_averaging.specifications.favre_average_variables, 29
turbulence_averaging.specifications.name, 29
turbulence_averaging.specifications.reynolds_average_variables, 29
turbulence_averaging.specifications.target_name, 29
turbulence_averaging.time_filter_interval, 29
use_edges, 18
naluX command line option
-D, -debug, 11
-h, -help, 11
-i, -input-deck, 11
-o, -log-file, 11
-p, -pprint, 11
-v, -version, 11
name
Nalu Input File Parameter, 18
number_of_points
Nalu Input File Parameter, 28
omega
Nalu Input File Parameter, 27
output
Nalu Input File Parameter, 25
output.compression_level
Nalu Input File Parameter, 26
output.output_data_base_name
   Nalu Input File Parameter, 25
output.output_forced_wall_time
   Nalu Input File Parameter, 25
output.output_frequency
   Nalu Input File Parameter, 25
output.output_node_set
   Nalu Input File Parameter, 26
output.output_start
   Nalu Input File Parameter, 26
output.output_variables
   Nalu Input File Parameter, 25

P
periodic_user_data
   Nalu Input File Parameter, 22
polynomial_order
   Nalu Input File Parameter, 18
post_processing
   Nalu Input File Parameter, 31
post_processing.frequency
   Nalu Input File Parameter, 32
post_processing.output_file_name
   Nalu Input File Parameter, 32
post_processing.parameters
   Nalu Input File Parameter, 32
post_processing.physics
   Nalu Input File Parameter, 31
post_processing.target_name
   Nalu Input File Parameter, 32
post_processing.type
   Nalu Input File Parameter, 31

R
radius
   Nalu Input File Parameter, 27
restart
   Nalu Input File Parameter, 26
restart.compression_level
   Nalu Input File Parameter, 26
restart.max_data_base_step_size
   Nalu Input File Parameter, 26
restart.restart_data_base_name
   Nalu Input File Parameter, 26
restart.restart_forced_wall_time
   Nalu Input File Parameter, 26
restart.restart_frequency
   Nalu Input File Parameter, 26
restart.restart_node_set
   Nalu Input File Parameter, 26
restart.restart_start
   Nalu Input File Parameter, 26
restart.restart_time
   Nalu Input File Parameter, 26

S
search_target_part
   Nalu Input File Parameter, 27
sierra::nalu::Actuator (C++ class), 54
sierra::nalu::AuxFunction (C++ class), 54
sierra::nalu::BoundaryLayerPerturbationAuxFunction (C++ class), 55
sierra::nalu::ContinuityEquationSystem (C++ class), 48
sierra::nalu::ConvectingTaylorVortexPressureAuxFunction (C++ class), 55
sierra::nalu::ConvectingTaylorVortexPressureGradAuxFunction (C++ class), 55
sierra::nalu::ConvectingTaylorVortexVelocityAuxFunction (C++ class), 55
sierra::nalu::DataProbePostProcessing (C++ class), 57
sierra::nalu::EnthalpyEquationSystem (C++ class), 45
sierra::nalu::EnthalpyEquationSystem::post_iter_work (C++ function), 46
sierra::nalu::EnthalpyEquationSystem::solve_and_update (C++ function), 46
sierra::nalu::EquationSystem (C++ class), 43
sierra::nalu::EquationSystem::post_iter_work (C++ function), 44
sierra::nalu::EquationSystem::post_iter_work_dep (C++ function), 44
sierra::nalu::EquationSystem::postIterAlgDriver_ (C++ member), 45
sierra::nalu::EquationSystem::pre_iter_work (C++ function), 44
sierra::nalu::EquationSystem::preIterAlgDriver_ (C++ member), 45
sierra::nalu::EquationSystem::solve_and_update (C++ function), 44
sierra::nalu::Equations (C++ class), 48
sierra::nalu::Equations::post_iter_work (C++ function), 49
sierra::nalu::Equations::postIterAlgDriver_ (C++ member), 49
sierra::nalu::Equations::pre_iter_work (C++ function), 49
sierra::nalu::Equations::preIterAlgDriver_ (C++ member), 49
sierra::nalu::Equations::solve_and_update (C++ function), 49
sierra::nalu::HeatCondEquationSystem (C++ class), 47
sierra::nalu::HeatCondEquationSystem::solve_and_update (C++ function), 47
sierra::nalu::Hex27SCS (C++ class), 53
sierra::nalu::Hex27SCV (C++ class), 53
sierra::nalu::Hex8FEM (C++ class), 53
sierra::nalu::HexSCS (C++ class), 53
sierra::nalu::HexSCV (C++ class), 53
sierra::nalu::InputOutputRealm (C++ class), 41
sierra::nalu::KovasznayPressureAuxFunction (C++ class), 55
sierra::nalu::KovasznayPressureGradientAuxFunction (C++ class), 55
sierra::nalu::KovasznayVelocityAuxFunction (C++ class), 55
sierra::nalu::LinearRampMeshDisplacementAuxFunction (C++ class), 56
sierra::nalu::LinearSolver (C++ class), 42
sierra::nalu::LowMachEquationSystem::pre_iter_work (C++ function), 45
sierra::nalu::LinearSystem::resetRows (C++ function), 46

sierra::nalu::SteadyThermal3dContactSrcElemKernel (C++ class), 56
sierra::nalu::SteadyThermal3dContactSrcElemKernel (C++ enumerator), 56
sierra::nalu::SteadyThermalContact3DSrcNodeSupportAlgorithm (C++ class), 53
sierra::nalu::SteadyThermalContactAuxFunction (C++ class), 56
sierra::nalu::SteadyThermalContactSrcElemSupportAlgorithm (C++ class), 56
sierra::nalu::SteadyThermalContactSrcNodeSupportAlgorithm (C++ class), 56
sierra::nalu::SurfaceForceAndMomentAlgorithm (C++ class), 57
sierra::nalu::SurfaceForceAndMomentWallFunctionAlgorithm (C++ class), 57
sierra::nalu::TetSCS (C++ class), 53
sierra::nalu::TetSCV (C++ class), 53
sierra::nalu::TimeIntegrator (C++ class), 51
sierra::nalu::TpetraLinearSolver (C++ class), 51
sierra::nalu::TpetraLinearSolver::destroyLinearSolver (C++ function), 51
sierra::nalu::TpetraLinearSolver::getType (C++ function), 52
sierra::nalu::TpetraLinearSolver::residual_norm (C++ function), 51
sierra::nalu::TpetraLinearSolver::setMueLu (C++ function), 51
sierra::nalu::TpetraLinearSolver::solve (C++ function), 52
sierra::nalu::TpetraLinearSolver::TpetraLinearSolver (C++ function), 51
sierra::nalu::TpetraLinearSolverConfig (C++ class), 53, 54
sierra::nalu::TpetraLinearSystem (C++ class), 43, 50
sierra::nalu::TpetraLinearSystem::resetRows (C++ function), 43, 50
sierra::nalu::Transfer (C++ class), 43
sierra::nalu::Transfers (C++ class), 43
sierra::nalu::Tri3DSCS (C++ class), 54
sierra::nalu::Tri3DSCV (C++ class), 54
sierra::nalu::TurbKineticEnergyEquationSystem (C++ class), 46
sierra::nalu::TurbKineticEnergyEquationSystem::solve_and_update (C++ function), 46
sierra::nalu::TurbulenceAveragingPostProcessing (C++ class), 56
sierra::nalu::TurbulenceAveragingPostProcessing::NALU_CLASSIC (C++ enumerator), 56
sierra::nalu::TurbulenceAveragingPostProcessing::MOVING_EXPONENTIAL (C++ enumerator), 57
sierra::nalu::WedSCS (C++ class), 53
sierra::nalu::WedSCV (C++ class), 53
sierra::nalu::WindEnergyAuxFunction (C++ class), 56

Nalu Input File Parameter

- tail_coordinates: Nalu Input File Parameter, 28
- time_int.name: Nalu Input File Parameter, 16
- time_int.realms: Nalu Input File Parameter, 17
- time_int.second_order_accuracy: Nalu Input File Parameter, 17
- time_int.start_time: Nalu Input File Parameter, 17
- time_int.termination_step_count: Nalu Input File Parameter, 16
- time_int.termination_time: Nalu Input File Parameter, 16
- time_int.time_step: Nalu Input File Parameter, 16
- time_int.time_step_count: Nalu Input File Parameter, 16
- time_int.time_stepping_type: Nalu Input File Parameter, 17
- time_step_control: Nalu Input File Parameter, 26
- transfers: Nalu Input File Parameter, 27
- turbine_name: Nalu Input File Parameter, 27
- turbulence_averaging: Nalu Input File Parameter, 28
- turbulence_averaging.averaging_type: Nalu Input File Parameter, 28
- turbulence_averaging.computes_favre_stress: Nalu Input File Parameter, 29
- turbulence_averaging.forced_reset: Nalu Input File Parameter, 28
- turbulence_averaging.specifications: Nalu Input File Parameter, 29
turbulence_averaging.specifications.compute_favre_tke
Nalu Input File Parameter, 29

turbulence_averaging.specifications.compute_lambda_ci
Nalu Input File Parameter, 29

turbulence_averaging.specifications.compute_q_criterion
Nalu Input File Parameter, 29

turbulence_averaging.specifications.compute_resolved_stress
Nalu Input File Parameter, 29

turbulence_averaging.specifications.compute_reynolds_stress
Nalu Input File Parameter, 29

turbulence_averaging.specifications.compute_sfs_stress
Nalu Input File Parameter, 29

turbulence_averaging.specifications.compute_temperature_resolved_flux
Nalu Input File Parameter, 29

turbulence_averaging.specifications.compute_temperature_sfs_flux
Nalu Input File Parameter, 29

turbulence_averaging.specifications.compute_tke
Nalu Input File Parameter, 29

turbulence_averaging.specifications.compute_vorticity
Nalu Input File Parameter, 29

turbulence_averaging.specifications.favre_average_variables
Nalu Input File Parameter, 29

turbulence_averaging.specifications.name
Nalu Input File Parameter, 29

turbulence_averaging.specifications.reynolds_average_variables
Nalu Input File Parameter, 29

turbulence_averaging.specifications.target_name
Nalu Input File Parameter, 29

turbulence_averaging.time_filter_interval
Nalu Input File Parameter, 29

use_edges
Nalu Input File Parameter, 18